23 research outputs found

    Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms

    Get PDF
    RNA interference (RNAi)-mediated viral inhibition has been used in a few organisms for eliciting viral resistance. In the present study, we report the use of RNAi in preventing baculovirus infection in a lepidopteran. We targeted the baculoviral immediate early-1 (ie-1) gene in both a transformed lepidopteran cell line and in the transgenic silkworm Bombyx mori L. Constitutive expression of double-stranded RNA was achieved by piggyBac-mediated transformation of Sf9 cell line with a transgene encoding double-stranded ie-1 RNA (dsie-1). Strong viral repression was seen at early stages of infection but subsequent recovery of viral proliferation was observed. In contrast, the same transgene inserted into the chromosomes of transgenic silkworms induced long-term inhibition of B. mori nucleopolyhedrovirus infection, with nearly 40% protection compared with nontransgenic animals. Protection was efficient at larval stages after oral infection with occlusion bodies or hemocoel injection of budded viruses. Virus injected pupae also displayed resistance. These results show that heritable RNAi can be used to protect silkworm strains from baculovirus infection

    3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards.

    No full text
    International audienceTransgenesis was recently achieved in Bombyx mori L., but it has proved difficult and time-consuming to screen the numerous progeny to identify the transgenic individuals. As the 3xP3-EGFP marker has been shown to be a suitable universal marker for transgenic insects (Nature 402 (1999) 370), we evaluated its use for embryonic-stage screening for B. mori L. germline transformation. Using the piggyBac-derived vector pBac[3xP3-EGFPaf], we were able to isolate four transgenic individuals from about 120,000 embryos (560 broods). The screening was straightforward due to EGFP production in the G1 embryonic stemmata, which was visible through the translucent egg chorion. EGFP was produced in the stemmata and central and peripheral nervous systems from the fifth day of embryonic development. It persisted at high levels in the stemmata throughout the larval stage, and was also present in the compound eyes and nervous tissues of the pupae and the compound eyes of the moths

    The biolistic method as a tool for testing the differential activity of putative silkmoth chorion gene promoters

    No full text
    Bombyx mori unpaired early chorion gene copies 6F6.1, .2 and .3 are exceptions to the typical organization and distribution pattern of known early ErA/ErB, middle A/B and late HcA/HcB divergently transcribed gene pairs. Contrary to such pairs, the boundaries of the 6F6 regulatory sequences are not easily defined; moreover, they share common sequence elements with the regulatory sequences of middle and late genes. In order to perform a functional study of the tissue and temporal specificity of the 6F6 putative promoter region, we decided to apply biolistics. In the present work, use of a region from the 6F6.2 5' untranslated sequence, spanning nucleotides -138 to the cap site, gave an expected expression pattern of a lacZ reporter gene. Temporal specificity was further verified by control experiments using the cloned intergenic sequence of the late gene pair HcA/B.12, which resulted in lacZ expression in late choriogenic follicles. At present, despite the recent successful germinal transgenesis of Bombyx mori, the biolistic transient expression system seems to be the most rapid technique to pursue the functional study of the promoter region of early chorion genes, including the three unconventional early 6F6 genes. © 2001 Elsevier Science Ltd
    corecore