9 research outputs found

    De l'hémolyse intravasculaire à bas bruit est associée à la neuropathie dans le diabète de type 2

    No full text
    International audienceType 2 diabetes (T2D) induces hyperglycemia, alters hemoglobin (Hb), red blood cell (RBC) deformability and impairs hemorheology. The question remains whether RBC breakdown and intravascular hemolysis (IVH) occur in T2D patients. We characterized RBC-degradation products and vesiculation in a case-control study of 109 T2D patients and 65 control subjects. We quantified heme-related absorbance by spectrophotometry and circulating extracellular vesicles (EV) by flow cytometry and electron microscopy. Heme-related absorbance was increased in T2D vs. control plasma (+57%) and further elevated in obese T2D plasma (+27%). However, large CD235a+ EV were not increased in T2D plasma. EV from T2D plasma, or shed by isolated T2D RBC, were notably smaller in diameter (-27%) and carried heme-related absorbance. In T2D plasma, higher heme-related absorbance (+30%) was associated to peripheral sensory neuropathy, and no other vascular complication. In vitro, T2D RBC-derived EV triggered endothelial stress and thrombin activation in a phosphatidylserine- and heme-dependent fashion. We concluded that T2D was associated with low-grade IVH. Plasma absorbance may constitute a novel biomarker of peripheral neuropathy in T2D, while flow cytometry focusing on large EV may be maladapted to characterize RBC EV in T2D. Moreover, therapeutics limiting IVH or neutralizing RBC breakdown products might bolster vasculoprotection in T2D

    Exploring the microvascular impact of red blood cell transfusion in intensive care unit patients

    No full text
    International audienceBACKGROUND: Red blood cell (RBC) transfusion is a common treatment for hospitalized patients. However, the effects of RBC transfusion on microvascular function remain controversial.METHODS: In a medical ICU in a tertiary teaching hospital, we prospectively included anemic patients requiring RBC transfusion. Skin microvascular reactivity was measured before and 30 min after RBC transfusion. Plasma was collected to analyze intravascular hemolysis and draw the lipidomic and cytokine profiles.RESULTS: In a cohort of 59 patients, the median age was 66 [55-81] years and SAPS II was 38 [24-48]. After RBC transfusion, endothelium-dependent microvascular reactivity improved in 35 (59%) patients, but worsened in 24 others (41%). Comparing clinical and biological markers revealed that baseline blood leucokyte counts distinguished improving from worsening patients (10.3 [5.7; 19.7] vs. 4.6 [2.1; 7.3] × 109/L; p = 0.001) and correlated with variations of microvascular reactivity (r = 0.36, p = 0.005). Blood platelet count was also higher in improving patients (200 [97; 280] vs 160 [40; 199] × 103/mL, p = 0.03) but did not correlate with variations of microvascular reactivity. We observed no intravascular hemolysis (HbCO, heme, bilirubin, LDH), but recorded a significant increase in RBC microparticle levels specific to improving patients after transfusion (292 [108; 531] vs. 53 [34; 99] MP/μL; p = 0.03). The improvement in microvascular dilation was positively correlated with RBC microparticle levels (R = 0.83, p < 0.001) and conversion of arachidonic acid into vasodilating eicosanoids.CONCLUSIONS: Patients displaying an improved microvascular reactivity after RBC transfusion had high blood leukocyte counts, increased RBC microparticle formation, and enhanced metabolism of arachidonic acid into vasodilating lipids. Our data suggested a contribution of recipient leukocytes to the vascular impact of RBC transfusion

    Evidence of a Role for Lactadherin in Alzheimer’s Disease

    No full text
    Lactadherin is a secreted extracellular matrix protein expressed in phagocytes and contributes to the removal of apoptotic cells. We examined lactadherin expression in brain sections of patients with or without Alzheimer’s disease and studied its role in the phagocytosis of amyloid β-peptide (Aβ). Cells involved in Alzheimer’s disease, including vascular smooth muscle cells, astrocytes, and microglia, showed a time-related increase in lactadherin production in culture. Quantitative analysis of the level of lactadherin showed a 35% reduction in lactadherin mRNA expression in the brains of patients with Alzheimer’s disease (n = 52) compared with age-matched controls (n = 58; P = 0.003). Interestingly, lactadherin protein was detected in the brains of patients with Alzheimer’s disease and controls, with low expression in areas rich in senile plaques and marked expression in areas without Aβ deposition. Using surface plasmon resonance, we observed a direct protein-protein interaction between recombinant lactadherin and Aβ 1-42 peptide in vitro. Lactadherin deficiency or its neutralization using specific antibodies significantly prevented Aβ 1-42 phagocytosis by murine and human macrophages. In conclusion, lactadherin plays an important role in the phagocytosis of Aβ 1-42 peptide, and its expression is reduced in Alzheimer’s disease. Alterations in lactadherin production/function may contribute to the initiation and/or progression of Alzheimer’s disease
    corecore