1,952 research outputs found
Tests of Scintillator Tiles for the Technological Prototype of Highly Granular Hadron Calorimeter
A new technological prototype of the highly granular hadron calorimeter for future collider experiments is being developed by the CALICE collaboration. The proposed baseline design of active elements considers scintillator tiles with a silicon photomultiplier readout. The light yield and uniformity of response of two tiles with dimple geometry from different producers were measured. The technology proposed for the ILD detector was used: each tile was individually wrapped in the reflecting foil and the SiPm was coupled directly to the dimple side of the scintillator tile. The measured response to minimum ionizing particle is almost twice better for BICRON408 scintillator than for polystyrene-based scintillator, while the estimated uniformity of response is better for the polystyrene-based scintillator tile produced by injection molding
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
Showers produced by positive hadrons in the highly granular CALICE
scintillator-steel analogue hadron calorimeter were studied. The experimental
data were collected at CERN and FNAL for single particles with initial momenta
from 10 to 80 GeV/c. The calorimeter response and resolution and spatial
characteristics of shower development for proton- and pion-induced showers for
test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos
corrected, new section added, figures regrouped. Accepted for publication in
JINS
Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter
The spatial development of hadronic showers in the CALICE scintillator-steel
analogue hadron calorimeter is studied using test beam data collected at CERN
and FNAL for single positive pions and protons with initial momenta in the
range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron
showers are parametrised with two-component functions. The parametrisation is
fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics
lists from Geant4 version 9.6. The parameters extracted from data and simulated
samples are compared for the two types of hadrons. The response to pions and
the ratio of the non-electromagnetic to the electromagnetic calorimeter
response, h/e, are estimated using the extrapolation and decomposition of the
longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to
JINS
Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter
A first prototype of a scintillator strip-based electromagnetic calorimeter
was built, consisting of 26 layers of tungsten absorber plates interleaved with
planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a
positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's
performance is presented in terms of the linearity and resolution of the energy
measurement. These results represent an important milestone in the development
of highly granular calorimeters using scintillator strip technology. This
technology is being developed for a future linear collider experiment, aiming
at the precise measurement of jet energies using particle flow techniques
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Software Compensation for Highly Granular Calorimeters using Machine Learning
A neural network for software compensation was developed for the highly
granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses
spatial and temporal event information from the AHCAL and energy information,
which is expected to improve sensitivity to shower development and the neutron
fraction of the hadron shower. The neural network method produced a
depth-dependent energy weighting and a time-dependent threshold for enhancing
energy deposits consistent with the timescale of evaporation neutrons.
Additionally, it was observed to learn an energy-weighting indicative of
longitudinal leakage correction. In addition, the method produced a linear
detector response and outperformed a published control method regarding
resolution for every particle energy studied
- …