10 research outputs found
Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics
Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections
Antibacterial activity of traditional medicinal plants used by Haudenosaunee peoples of New York State
<p>Abstract</p> <p>Background</p> <p>The evolution and spread of antibiotic resistance, as well as the evolution of new strains of disease causing agents, is of great concern to the global health community. Our ability to effectively treat disease is dependent on the development of new pharmaceuticals, and one potential source of novel drugs is traditional medicine. This study explores the antibacterial properties of plants used in Haudenosaunee traditional medicine. We tested the hypothesis that extracts from Haudenosaunee medicinal plants used to treat symptoms often caused by bacterial infection would show antibacterial properties in laboratory assays, and that these extracts would be more effective against moderately virulent bacteria than less virulent bacteria.</p> <p>Methods</p> <p>After identification and harvesting, a total of 57 different aqueous extractions were made from 15 plant species. Nine plant species were used in Haudenosaunee medicines and six plant species, of which three are native to the region and three are introduced, were not used in traditional medicine. Antibacterial activity against mostly avirulent (<it>Escherichia coli, Streptococcus lactis</it>) and moderately virulent (<it>Salmonella typhimurium, Staphylococcus aureus</it>) microbes was inferred through replicate disc diffusion assays; and observed and statistically predicted MIC values were determined through replicate serial dilution assays.</p> <p>Results</p> <p>Although there was not complete concordance between the traditional use of Haudenosaunee medicinal plants and antibacterial activity, our data support the hypothesis that the selection and use of these plants to treat disease was not random. In particular, four plant species exhibited antimicrobial properties as expected (<it>Achillea millefolium, Ipomoea pandurata, Hieracium pilosella</it>, and <it>Solidago canadensis</it>), with particularly strong effectiveness against <it>S. typhimurium</it>. In addition, extractions from two of the introduced species (<it>Hesperis matronalis </it>and <it>Rosa multiflora</it>) were effective against this pathogen.</p> <p>Conclusions</p> <p>Our data suggest that further screening of plants used in traditional Haudenosaunee medicine is warranted, and we put forward several species for further investigation of activity against <it>S. typhimurium </it>(<it>A. millefolium, H. matronalis, I. pandurata, H. pilosella, R. multiflora, S. canadensis</it>).</p
Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria
Background:
Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria.
Methodology/Principal Findings:
In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology.
Conclusions/Significance:
These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.National Institutes of Health (U.S.) (grant R01GM59903)National Institutes of Health (U.S.) (grant R01AI050875)Netherlands Organization for Scientific Research (VICI grant 700.56.442)Massachusetts Technology Transfer Center (MTTC)National Institutes of Health (U.S.) (grant 5U54MH084690-02
Crypthophilic Acids A, B, And C: Resin Glycosides From Aerial Parts Of Scrophularia Crypthophila
The water-soluble part of the methanolic extract from the aerial parts of Scrophularia crypthophila, through chromatographic methods, yielded three new resin glycosides, crypthophilic acids A-C (1-3). Compounds 1-3 are tetraglycosides of (+)-3S,12S-dihydroxypalmitic acid. The structures of these and 10 known compounds were elucidated by spectroscopic and chemical means. All natural resin glycosides known so far have been obtained from Convolvulaceae plants; this is the first report of such glycosides from another, taxonomically unrelated family (Scrophulariaceae).Wo
Microbial efflux systems and inhibitors: Approaches to drug discovery and the challenge of clinical implementation
Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches