92 research outputs found

    Hand Position and Response Assignment Modulate the Activation of the Valence‐Space Conceptual Metaphor

    Full text link
    Conceptual metaphor is ubiquitous in language and thought, as we usually reason and talk about abstract concepts in terms of more concrete ones via metaphorical mappings that are hypothesized to arise from our embodied experience. One pervasive example is the conceptual projection of valence onto space, which flexibly recruits the vertical and lateral spatial frames to gain structure (e.g., GOOD IS UP-BAD IS DOWN and GOOD IS RIGHT-BAD IS LEFT). In the current study, we used a valence judgment task to explore the role that exogenous bodily cues (namely response hand positions) play in the allocation of spatial attention and the modulation of conceptual congru- ency effects. Experiment 1 showed that congruency effects along the vertical axis are weakened when task conditions (i.e., the use of vertical visual cues, on the one hand, and the horizontal alignment of responses, on the other) draw attention to both the vertical and lateral axes making them simultaneously salient. Experiment 2 evidenced that the vertical alignment of participants' hands while responding to the task¿regardless of the location of their dominant hand¿facilitates the judgment of positive and negative-valence words, as long as participants respond in a metaphor-congruent manner (i.e., up responses are good and down responses are bad). Overall, these results support the claim that source domain representations are dynamically activated in response to the context and that bodily states are an integral part of that context. Keywords: Conceptual metaphor; Embodiment; Valence spac

    Contrasting plant–soil–microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic–alpine landscape

    Get PDF
    Global vegetation regimes vary in belowground carbon (C) and nitrogen (N) dynamics. However, disentangling large-scale climatic controls from the effects of intrinsic plant–soil–microbial feedbacks on belowground processes is challenging. In local gradients with similar pedo-climatic conditions, effects of plant–microbial feedbacks may be isolated from large-scale drivers. Across a subarctic–alpine mosaic of historic grazing fields and surrounding heath and birch forest, we evaluated whether vegetation-specific plant–microbial feedbacks involved contrasting N cycling characteristics and C and N stocks in the organic topsoil. We sequenced soil fungi, quantified functional genes within the inorganic N cycle, and measured 15N natural abundance. In grassland soils, large N stocks and low C : N ratios associated with fungal saprotrophs, archaeal ammonia oxidizers, and bacteria capable of respiratory ammonification, indicating maintained inorganic N cycling a century after abandoned reindeer grazing. Toward forest and heath, increasing abundance of mycorrhizal fungi co-occurred with transition to organic N cycling. However, ectomycorrhizal fungal decomposers correlated with small soil N and C stocks in forest, while root-associated ascomycetes associated with small N but large C stocks in heath, uncoupling C and N storage across vegetation types. We propose that contrasting, positive plant–microbial feedbacks stabilize vegetation trajectories, resulting in diverging soil C : N ratios at the landscape scale.publishedVersio

    Ectomycorrhizal fungi with hydrophobic mycelia and rhizomorphs dominate in young pine trees surviving experimental drought stress

    Get PDF
    Mycorrhizal fungi can help plants to cope with drought, but research on the fungal communities that are more resistant to drought or alleviate drought stress of trees is still scarce. In this study, we investigated effects of drought on soil fungal communities and explored potential fungal traits related to drought resistance under greenhouse conditions. We manipulated water availability in pine seedlings belonging to three Spanish Pinus pinaster populations from geographical areas subjected to contrasting summer drought. A set of plant ecophys-iological traits were quantified and soil fungi was quantified and profiled using ergosterol and Pacific Biosciences sequencing. Abundance of ectomycorrhizal (ECM) fungi in plants subjected to drought was lower than in well-watered plants. Most ECM taxa in plants surviving drought had long exploration types and were taxa typically forming rhizomorphs and hydrophobic mycelia. By contrast, ECM taxa in well-watered plants had wider range of distinct exploration types. No differences in fungal communities were found among P. pinaster populations. No associations between ECM fungi and plant ecophysiological traits were found, but significant interactions be-tween drought treatments and belowground plant biomass were found for the relative abundances of ECM fungi, particularly ECM with long exploration types. Plants subjected to drought may benefit by associating to ECM taxa previously shown to transport water efficiently.L.S. and R.Z. acknowledge support from Ministerio de Economía y Competitividad/FEDER Grants FUTURPIN AGL2015-68274-C3-2-R, RESILPIN RTI2018-094691-B-C33 and Xunta de Galicia-GAIN grant IN607/2021/03. J.O. was supported by a Ramón y Cajal fellowship (RYC-2015-17459) and J.A.B. was supported by the Serra-Hunter Program-Generalitat de Catalunya

    Soil moisture and fertility drive earthworm diversity in north temperate semi-natural grasslands

    Get PDF
    Intensive management of arable land reduces earthworm density and diversity. This may impair earthwormmediated soil functions, such as nutrient mineralization and soil structure formation. To sustain earthworm source populations for re-colonization of cultivated soils, it is therefore important to preserve habitats with high earthworm diversity. Semi-natural grasslands, with a long continuity without soil disturbance, could serve as such earthworm diversity reservoirs. This is particularly important in mixed agricultural landscapes with elements of multiple land uses. Nonetheless, earthworm density and diversity vary greatly among grasslands. To preserve and optimally manage the most suitable grasslands, knowledge about which grassland characteristics best explain earthworm diversity is needed. Additionally, we have a limited picture of earthworm diversity in general, because previous studies have neglected juvenile earthworms and cryptic species. The juvenile fraction commonly comprises the main part of earthworm samples, whereas morphologically inseparable cryptic species account for an unknown fraction. This fraction is of particular importance, as juveniles reflect the local reproductive and regeneration potential of earthworm populations and communities. To determine the full species composition of earthworm communities, we sampled earthworms from 28 semi-natural grasslands in southcentral Sweden and identified them to species by DNA barcoding. To test how grassland characteristics explain earthworm density, diversity, and community composition, we measured several characteristics of soils, vegetation, and management of the grasslands, and descriptors of the surrounding landscape. DNA barcoding revealed nearly twice as many species as were identified morphologically. Earthworm densities were higher in grasslands with higher Ellenberg moisture indicator values and lower soil C:N ratios. The diversity and occurrence of many earthworm species was also higher in grasslands with higher soil moisture indicator values and lower C:N ratios, and further increased with habitat heterogeneity. Certain species occurred more likely in grasslands with higher grazing intensity. Epigeic earthworms, which live in and feed on surface litter, were more common in grasslands with higher moisture indicator values and SOM content. Thus, dry and relatively unproductive semi-natural grasslands, which are common in Sweden, are unlikely to sustain high earthworm diversity - a pattern contrasting to previously reported plant diversity responses. Instead, earthworm diversity seems concentrated to more productive grazed grasslands, with large within-grassland heterogeneity. Therefore, we highlight the importance of considering soil animals in conservation policies for semi-natural grasslands

    Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities

    Get PDF
    Recent studies have questioned the use of high-throughput sequencing of the nuclear ribosomal internal transcribed spacer (ITS) region to derive a semi-quantitative representation of fungal community composition. However, comprehensive studies that quantify biases occurring during PCR and sequencing of ITS amplicons are still lacking. We used artificially assembled communities consisting of 10 ITS-like fragments of varying lengths and guanine-cytosine (GC) contents to evaluate and quantify biases during PCR and sequencing with Illumina MiSeq, PacBio RS II and PacBio Sequel I technologies. Fragment length variation was the main source of bias in observed community composition relative to the template, with longer fragments generally being under-represented for all sequencing platforms. This bias was three times higher for Illumina MiSeq than for PacBio RS II and Sequel I. All 10 fragments in the artificial community were recovered when sequenced with PacBio technologies, whereas the three longest fragments (> 447 bases) were lost when sequenced with Illumina MiSeq. Fragment length bias also increased linearly with increasing number of PCR cycles but could be mitigated by optimization of the PCR setup. No significant biases related to GC content were observed. Despite lower sequencing output, PacBio sequencing was better able to reflect the community composition of the template than Illumina MiSeq sequencing

    SETD7 regulates the differentiation of human embryonic stem cells

    Get PDF
    The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knockdown that might affect the proper silencing of these genes during differentiation.M.J.B. was partially supported by the Ramón y Cajal program of MEC (RYC-2007-01510). B.S. was a recipient of a predoctoral fellowship from MEC (BES-2008-009567). C.M. was supported by PT13/0001/0041 PRB2-ISCIII-SGEFI- FEDER-PE I+D+i 2013-2016. J.C. was partially supported by Fundación CELLEX. This work was partially supported by grant RD12/0019/0034 TERCEL-RETICS-ISCIII-MINECO-FEDER, grant SAF2009-08588 from MICINN to M.J.B and grant BFU2014-52237 to A.J.Peer Reviewe
    corecore