286 research outputs found

    Large, Complex Housing

    Get PDF
    The purpose of this capstone project was to develop a design for a High Voltage Direct Current (HVDC) generator housing with built-in passageways for oil to flow through and cool the machine. The machine should be made using advanced manufacturing. A 3D model concept was designed with the use of SolidWorks. The appropriate hand calculations were completed to ensure that the generator housing would contain the components within itself under various environmental conditions.. The model was then 3D printed to produce a prototype that displays the design features within the housing. The next stage of the project will include completing a thermal and stress analysis on the generator assembly to ensure that the oil passageways within the housing sufficiently cool the generator, the internal components will not overheat, and the materials will not fail. This will be completed at Safran Electrical and Power (SEP) within the next year

    Organic Materials for Photonics: Properties and Applications

    Get PDF
    Photonics will play a key-role for the future development of ICT and healthcare and organic semiconductors are promising candidates to fulfil the capacity of photonics and deliver on its promises. This “photonics revolution” relies on novel and more performing materials, tailored for the specific requirements of real-world applications, and on reliable and cheap technologies, which can attract investments to address the transition from academia to industry. In this dissertation, I will report my findings on conjugated polymers suitable for photonic applications and demonstrate their use into low-cost photonic structures, as proof of concept. The first part is dedicated to the study of an aggregation-induced emission polymer, whose fluorescence is enhanced in the aggregated solid-state thanks to the restrictions of intramolecular rotations in contrast to typical planar conjugated polymers. I will show its exceptional fundamental photophysical properties which enable the reduction of non-radiative pathways and makes it attractive for its use in organic light-emitting diodes. In the second part, I will present the application of conjugated polymers into flexible all-polymer microcavities fabricated through a low-cost process based on spin coating. The incorporation of functional defects in periodic dielectric structures with optical feedback will enable the change in the photonic density of states. I will report the investigation on photonic resonators embedding an aggregation-induced polymer emitting in the visible and a novel near-infrared oligomer, assessing high quality factors and tuning of their radiative rates to achieve low threshold optically pumped lasers. In the last part, I will show the infiltration of conjugated engineered materials into porous silicon microcavities to enable a novel class of photonically-enhanced chips for communications and sensing. A cheap electrochemical technique has been employed to fabricate one-dimensional resonators, which I characterized fully to demonstrate the variation of the photonic density of states and an efficient approach to novel hybrid photonic devices

    Trait Impulsivity and Anhedonia: Two Gateways for the Development of Impulse Control Disorders in Parkinson's Disease?

    Get PDF
    Apathy and impulsivity are two major comorbid syndromes of Parkinson's disease (PD) that may represent two extremes of a behavioral spectrum modulated by dopamine-dependent processes. PD is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta to which are attributed the cardinal motor symptoms of the disorder. Dopamine replacement therapy (DRT), used widely to treat these motor symptoms, is often associated with deficits in hedonic processing and motivation, including apathy and depression, as well as impulse control disorders (ICDs). ICDs comprise pathological gambling, hypersexuality, compulsive shopping, binge eating, compulsive overuse of dopaminergic medication, and punding. More frequently observed in males with early onset PD, ICDs are associated not only with comorbid affective symptoms, such as depression and anxiety, but also with behavioral traits, such as novelty seeking and impulsivity, as well as with personal or familial history of alcohol use. This constellation of associated risk factors highlights the importance of inter-individual differences in the vulnerability to develop comorbid psychiatric disorders in PD patients. Additionally, withdrawal from DRT in patients with ICDs frequently unmasks a severe apathetic state, suggesting that apathy and ICDs may be caused by overlapping neurobiological mechanisms within the cortico-striato-thalamo-cortical networks. We suggest that altered hedonic and impulse control processes represent distinct prodromal substrates for the development of these psychiatric symptoms, the etiopathogenic mechanisms of which remain unknown. Specifically, we argue that deficits in hedonic and motivational states and impulse control are mediated by overlapping, yet dissociable, neural mechanisms that differentially interact with DRT to promote the emergence of ICDs in vulnerable individuals. Thus, we provide a novel heuristic framework for basic and clinical research to better define and treat comorbid ICDs in PD.This is the final published version. It first appeared at http://journal.frontiersin.org/article/10.3389/fpsyt.2016.00091/full

    Diarylethenes in Optically Switchable Organic Light‐Emitting Diodes: Direct Investigation of the Reversible Charge Carrier Trapping Process

    Get PDF
    The design, fabrication, and characterization of optically switchable organic light-emitting diodes (OSOLEDs) based on the combination of the commercially available light-emitting polymer poly(9,9′-dioctylfluorene-alt-benzothiadiazole), F8BT, doped with a diarylethene derivative is reported. The photochromic activity of the dopant in the solid state has been investigated both via UV/vis absorption and photoluminescence spectroscopy, whereas the morphology of different blends is investigated via atomic force microscopy. OSOLEDs embedding dopant loadings of 1, 5, and 10 wt% exhibit optical responsivity with a maximum reversible optical threshold voltage shift of 4 V. The best performing devices containing 5 wt% dopant show a maximum current density and luminance ON/OFF ratio of ≈20 and ≈90, respectively. For the first time, the impact of the diarylethene isomerization on hole and electron transport has been decoupled and directly investigated, via the design, fabrication, and characterization of single-carrier switchable devices based on the same blends. Not only do these results confirm the photo-responsive trapping activity of the diarylethenes on both charge carriers, but they also demonstrate its asymmetry, with a predominant effect on electron transport that is over 3.4 times larger as compared to hole transport

    Towards efficient near-infrared fluorescent organic light-emitting diodes

    Get PDF
    The energy gap law (EG-law) and aggregation quenching are the main limitations to overcome in the design of near-infrared (NIR) organic emitters. Here, we achieve unprecedented results by synergistically addressing both of these limitations. First, we propose porphyrin oligomers with increasing length to attenuate the effects of the EG -law by suppressing the non-radiative rate growth, and to increase the radiative rate via enhancement of the oscillator strength. Second, we design side chains to suppress aggregation quenching. We find that the logarithmic rate of variation in the non-radiative rate vs. EG is suppressed by an order of magnitude with respect to previous studies, and we complement this breakthrough by demonstrating organic light-emitting diodes with an average external quantum efficiency of ~1.1%, which is very promising for a heavy-metal-free 850 nm emitter. We also present a novel quantitative model of the internal quantum efficiency for active layers supporting triplet-to-singlet conversion. These results provide a general strategy for designing high-luminance NIR emitters

    Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc

    Get PDF
    Generic InP foundry processes allow monolithic integration of active and passive elements into a common p-n doped layerstack. The passive loss can be greatly reduced by restricting the p-dopant to active regions. We report on a localized Zn-diffusion process based on MOVPE, which allows to reduce waveguide loss from 2 dB/cm to below 0.4 dB/cm. We confirm this value by fabrication of a 73 mm long spiral ring resonator, with a record quality factor of 1.2 million and an extinction ratio of 9.7 dB.</p

    Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling

    Get PDF
    Porous silicon (PSi) is a promising material for future integrated nanophotonics when coupled with guest emitters, still facing challenges in terms of homogenous distribution and nanometric thickness of the emitter coating within the silicon nanostructure. Herein, it is shown that the nanopore surface of a porous silicon oxide (PSiO2) microcavity (MC) can be conformally coated with a uniform nm-thick layer of a cationic light-emitting polyelectrolyte, e.g., poly(allylamine hydrochloride) labeled with Rhodamine B (PAH-RhoB), leveraging the self-tuned electrostatic interaction of the positively-charged PAH-RhoB polymer and negatively-charged PSiO2 surface. It is found that the emission of PAH-RhoB in the PSiO2 MC is enhanced (≈2.5×) and narrowed (≈30×) at the resonant wavelength, compared with that of PAH-RhoB in a non-resonant PSiO2 reference structure. The time-resolved photoluminescence analysis highlights a shortening (≈20%) of the PAH-RhoB emission lifetime in the PSiO2 MC at the resonance versus off-resonance wavelengths, and with respect to the reference structure, thereby proving a significant variation of the radiative decay rate. Remarkably, an experimental Purcell factor Fp = 2.82 is achieved. This is further confirmed by the enhancement of the photoluminescence quantum yield of the PAH-RhoB in the PSiO2 MC with respect to the reference structure. Application of the electrostatic nanoassembling approach to other emitting dyes, nanomaterials, and nanophotonic systems is envisaged

    The effect of calving season on milk production in water buffalo (Bubalus bubalis)

    Get PDF
    The influence of calving season on milk production and composition was studied in 16 adult (3rd lactation) water buffaloes from a single form in southern Italy over a 3 yr period. The data were separated into two groups according to calving season: group A of animals that calved from winter to spring and group B of those that calved throughout summer and autumn. Daily milk production and lactation length over the whole period (1997-2000) were higher (P&lt;0.01) in group B than in A (9.11 vs. 8.55 kg and 275 vs. 258 d), but milk fat content was higher (P&lt;0.05) in A than B (8.88 vs. 8.41%). No differences between groups were observed in milk protein content (4.7%). It was concluded that the calving season had little effect on the net income from this herd (In English)

    Nigrostriatal Dopaminergic Denervation Does Not Promote Impulsive Choice in the Rat: Implication for Impulse Control Disorders in Parkinson’s Disease

    Get PDF
    Impulse control disorders (ICDs) are frequent behavioral complications of dopaminergic (DA) replacement therapies (DRTs) in Parkinson’s disease (PD). Impulsive choice, which refers to an inability to tolerate delays to reinforcement, has been identified as a core pathophysiological process of ICDs. Although impulsive choices are exacerbated in PD patients with ICDs under DRTs, some clinical and preclinical studies suggest that the DA denervation of the dorsal striatum induced by the neurodegenerative process as well as a pre-existing high impulsivity trait, may both contribute to the emergence of ICDs in PD. We therefore investigated in a preclinical model in rats, specifically designed to study PD-related non-motor symptoms, the effect of nigrostriatal DA denervation on impulsive choice, in relation to pre-existing levels of impulsivity, measured in a Delay Discounting Task (DDT). In this procedure, rats had the choice between responding for a small sucrose reinforcer delivered immediately, or a larger sucrose reinforcer, delivered after a 0, 5, 10 or 15 s delay. In two different versions of the task, the preference for the large reinforcer decreased as the delay increased. However, and in contrast to our initial hypothesis, this discounting effect was neither exacerbated by, or related to, the extent of the substantia nigra pars compacta (SNc) DA lesion, nor it was influenced by pre-existing variability in impulsive choice. These results therefore question the potential implication of the nigrostriatal DA system in impulsive choice, as well as the DA neurodegenerative process as a factor contributing significantly to the development of ICDs in PD

    Opportunities for the Development of Neuroimmune Therapies in Addiction

    Full text link
    Studies have implicated neuroinflammatory processes in the pathophysiology of various psychiatric conditions, including addictive disorders. Neuroimmune signaling represents an important and relatively poorly understood biological process in drug addiction. The objective of this review is to update the field on recent developments in neuroimmune therapies for addiction. First, we review studies of neuroinflammation in relation to alcohol and methamphetamine dependence followed by a section on neuroinflammation and accompanying neurocognitive dysfunction in HIV infection and concomitant substance abuse. Second, we provide a review of pharmacotherapies with neuroimmune properties and their potential development for the treatment of addictions. Pharmacotherapies covered in this review include ibudilast, minocycline, doxycycline, topiramate, indomethacin, rolipram, anakinra (IL-1Ra), peroxisome proliferator-activated receptor agonists, naltrexone, and naloxone. Lastly, summary and future directions are provided with recommendations for how to efficiently translate preclinical findings into clinical studies that can ultimately lead to novel and more effective pharmacotherapies for addiction
    corecore