384 research outputs found

    Mechanosensitive Self-Replication Driven by Self-Organization

    Get PDF
    Self-replicating molecules are likely to have played an important role in the origin of life, and a small number of fully synthetic self-replicators have already been described. Yet it remains an open question which factors most effectively bias the replication toward the far-from-equilibrium distributions characterizing even simple organisms. We report here two self-replicating peptide-derived macrocycles that emerge from a small dynamic combinatorial library and compete for a common feedstock. Replication is driven by nanostructure formation, resulting from the assembly of the peptides into fibers held together by β sheets. Which of the two replicators becomes dominant is influenced by whether the sample is shaken or stirred. These results establish that mechanical forces can act as a selection pressure in the competition between replicators and can determine the outcome of a covalent synthesis.

    The VANDELS survey: Dust attenuation in star-forming galaxies at z=3−4\mathbf{z=3-4}

    Get PDF
    We present the results of a new study of dust attenuation at redshifts 3<z<43 < z < 4 based on a sample of 236236 star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range 8.2≤8.2 \leq log(M⋆/M⊙)≤10.6(M_{\star}/M_{\odot}) \leq 10.6 probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at z≃3.5z\simeq3.5 is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of RV=4.18±0.29R_{V}=4.18\pm0.29. We show that the optical attenuation (AVA_V) versus stellar mass (M⋆M_{\star}) relation predicted using our method is consistent with recent ALMA observations of galaxies at 2<z<32<z<3 in the \emph{Hubble} \emph{Ultra} \emph{Deep} \emph{Field} (HUDF), as well as empirical AV−M⋆A_V - M_{\star} relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the AV−M⋆A_V - M_{\star} relation does not evolve over the redshift range 0<z<50<z<5, at least for galaxies with log(M⋆/M⊙)≳9.5(M_{\star}/M_{\odot}) \gtrsim 9.5. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log(M⋆/M⊙)≲9.0(M_{\star}/M_{\odot}) \lesssim 9.0.Comment: 16 pages, 12 figures, accepted for publication in MNRA

    The VANDELS survey: Dust attenuation in star-forming galaxies at z=3−4\mathbf{z=3-4}

    Full text link
    We present the results of a new study of dust attenuation at redshifts 3<z<43 < z < 4 based on a sample of 236236 star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range 8.2≤8.2 \leq log(M⋆/M⊙)≤10.6(M_{\star}/M_{\odot}) \leq 10.6 probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at z≃3.5z\simeq3.5 is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of RV=4.18±0.29R_{V}=4.18\pm0.29. We show that the optical attenuation (AVA_V) versus stellar mass (M⋆M_{\star}) relation predicted using our method is consistent with recent ALMA observations of galaxies at 2<z<32<z<3 in the \emph{Hubble} \emph{Ultra} \emph{Deep} \emph{Field} (HUDF), as well as empirical AV−M⋆A_V - M_{\star} relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the AV−M⋆A_V - M_{\star} relation does not evolve over the redshift range 0<z<50<z<5, at least for galaxies with log(M⋆/M⊙)≳9.5(M_{\star}/M_{\odot}) \gtrsim 9.5. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log(M⋆/M⊙)≲9.0(M_{\star}/M_{\odot}) \lesssim 9.0.Comment: 16 pages, 12 figures, accepted for publication in MNRA

    The VANDELS survey: A strong correlation between Lyα\alpha equivalent width and stellar metallicity at 3≤z≤5\mathbf{3\leq z \leq 5}

    Get PDF
    We present the results of a new study investigating the relationship between observed Lyα\alpha equivalent width (WλW_{\lambda}(Lyα\alpha)) and the metallicity of the ionizing stellar population (Z⋆Z_{\star}) for a sample of 768768 star-forming galaxies at 3≤z≤53 \leq z \leq 5 drawn from the VANDELS survey. Dividing our sample into quartiles of rest-frame WλW_{\lambda}(Lyα\alpha) across the range -58 \unicode{xC5} \lesssim WλW_{\lambda}(Lyα\alpha) \lesssim 110 \unicode{xC5} we determine Z⋆Z_{\star} from full spectral fitting of composite far-ultraviolet (FUV) spectra and find a clear anti-correlation between WλW_{\lambda}(Lyα\alpha) and Z⋆Z_{\star}. Our results indicate that Z⋆Z_{\star} decreases by a factor ≳3\gtrsim 3 between the lowest WλW_{\lambda}(Lyα\alpha) quartile (⟨\langleWλW_{\lambda}(Lyα\alpha)\rangle=-18\unicode{xC5}) and the highest WλW_{\lambda}(Lyα\alpha) quartile (⟨\langleWλW_{\lambda}(Lyα\alpha)\rangle=24\unicode{xC5}). Similarly, galaxies typically defined as Lyman Alpha Emitters (LAEs; WλW_{\lambda}(Lyα\alpha) >20\unicode{xC5}) are, on average, metal poor with respect to the non-LAE galaxy population (WλW_{\lambda}(Lyα\alpha) \leq20\unicode{xC5}) with Z⋆Z_{\star}non−LAE≳2×_{\rm{non-LAE}}\gtrsim 2 \times Z⋆Z_{\star}LAE_{\rm{LAE}}. Finally, based on the best-fitting stellar models, we estimate that the increasing strength of the stellar ionizing spectrum towards lower Z⋆Z_{\star} is responsible for ≃15−25%\simeq 15-25\% of the observed variation in WλW_{\lambda}(Lyα\alpha) across our sample, with the remaining contribution (≃75−85%\simeq 75-85\%) being due to a decrease in the HI/dust covering fractions in low Z⋆Z_{\star} galaxies.Comment: 10 pages, 6 figures, MNRAS accepte

    The connection between stellar mass, age and quenching timescale in massive quiescent galaxies at z≃1z \simeq 1

    Get PDF
    We present a spectro-photometric study of a mass-complete sample of quiescent galaxies at 1.0<z<1.31.0 < z < 1.3 with log10(M⋆/M⊙)≥10.3\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}}) \geq 10.3 drawn from the VANDELS survey, exploring the relationship between stellar mass, age and star-formation history. Within our sample of 114 galaxies, we derive a stellar-mass vs stellar-age relation with a slope of 1.20−0.27+0.281.20^{+0.28}_{-0.27} Gyr per decade in stellar mass. When combined with recent literature results, we find evidence that the slope of this relation remains consistent over the redshift interval 0<z<40<z<4. The galaxies within the VANDELS quiescent display a wide range of star-formation histories, with a mean star-formation timescale of 1.5±0.11.5\pm{0.1} Gyr and a mean quenching timescale of 1.4±0.11.4\pm{0.1} Gyr. We also find a large scatter in the quenching timescales of the VANDELS quiescent galaxies, in agreement with previous evidence that galaxies at z∼1z \sim 1 cease star formation via multiple mechanisms. We then focus on the oldest galaxies in our sample, finding that the number density of galaxies that quenched before z=3z = 3 with stellar masses log10(M⋆/M⊙)≥10.6\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}}) \geq 10.6 is 1.12−0.72+1.47×10−5 Mpc−3 1.12_{-0.72}^{+1.47} \times 10^{-5} \ \mathrm{Mpc}^{-3}. Although uncertain, this estimate is in good agreement with the latest observational results at 3<z<43<z<4, tentatively suggesting that neither rejuvenation nor merger events are playing a major role in the evolution of the oldest massive quiescent galaxies within the redshift interval 1<z<31<z<3.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure

    A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from z = 0.6 to z = 1.3

    Get PDF
    We study the relationships between stellar mass, size and age within the quiescent population, using two mass-complete spectroscopic samples with log10(M⋆/M⊙)>10.3\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}})>10.3, taken from VANDELS at 1.0<z<1.31.0<z<1.3, and LEGA-C at 0.6<z<0.80.6<z<0.8. Using robust Dn_{n}4000 values, we demonstrate that the well-known 'downsizing' signature is already in place by z≃1.1z\simeq1.1, with Dn_{n}4000 increasing by ≃0.1\simeq0.1 across a ≃\simeq 1 dex mass interval for both VANDELS and LEGA-C. We then proceed to investigate the evolution of the quiescent galaxy stellar mass-size relation from z≃1.1z\simeq1.1 to z≃0.7z\simeq0.7. We find the median size increases by a factor of 1.9±0.11.9\pm{0.1} at log10(M⋆/M⊙)=10.5\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}})=10.5, and see tentative evidence for flattening of the relation, finding slopes of α=0.72±0.06\alpha=0.72\pm0.06 and α=\alpha= 0.56±0.040.56\pm0.04 for VANDELS and LEGA-C respectively. We finally split our sample into galaxies above and below our fitted mass-size relations, to investigate how size and Dn_{n}4000 correlate. For LEGA-C, we see a clear difference, with larger galaxies found to have smaller Dn_{n}4000 at fixed stellar mass. Due to the faintness and smaller numbers of the VANDELS sample, we cannot confirm whether a similar relation exists at z≃1.1z\simeq1.1. We consider whether differences in stellar age or metallicity are most likely to drive this size-Dn_{n}4000 relation, finding that any metallicity differences are unlikely to fully explain the observed offset, meaning smaller galaxies must be older than their larger counterparts. We find the observed evolution in size, mass and Dn_{n}4000 across the ≃2\simeq2 Gyr from z∼1.1z\sim1.1 to z∼0.7z\sim0.7 can be explained by a simple toy model in which VANDELS galaxies evolve passively, whilst experiencing a series of minor mergers.Comment: 14 pages, 9 figures, submitted to MNRA

    A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from z = 0.6 to z = 1.3

    Get PDF
    We study the relationships between stellar mass, size, and age within the quiescent population, using two mass-complete spectroscopic samples with log10(M⊙/M⊙) &gt; 10.3, taken from VANDELS at 1.0 &lt; z &lt; 1.3, and LEGA-C at 0.6 &lt; z &lt; 0.8. Using robust Dn4000 values, we demonstrate that the well-known 'downsizing' signature is already in place by z 1.1, with Dn4000 increasing by 0.1 across a 1 dex mass interval for both VANDELS and LEGA-C. We then proceed to investigate the evolution of the quiescent galaxy stellar mass-size relation from z -1.1 to z -0.7. We find the median size increases by a factor of 1.9 ± 0.1 at log10(M⊙/M⊙) = 10.5, and see tentative evidence for flattening of the relation, finding slopes of α = 0.72 ± 0.06 and α =\0.56\pm 0.04 for VANDELS and LEGA-C, respectively. We finally split our sample into galaxies above and below our fitted mass-size relations, to investigate how size and Dn4000 correlate. For LEGA-C, we see a clear difference, with larger galaxies found to have smaller Dn4000 at fixed stellar mass. Due to the faintness and smaller numbers of the VANDELS sample, we cannot confirm whether a similar relation exists at z -1.1. We consider whether differences in stellar age or metallicity are most likely to drive this size-Dn4000 relation, finding that any metallicity differences are unlikely to fully explain the observed offset, meaning smaller galaxies must be older than their larger counterparts. We find the observed evolution in size, mass, and Dn4000 across the -2 Gyr from z ∼1.1 to z ∼0.7 can be explained by a simple toy model in which VANDELS galaxies evolve passively whilst experiencing a series of minor mergers

    Timing the earliest quenching events with a robust sample of massive quiescent galaxies at 2 &lt;z &lt;5

    Get PDF
    We present a sample of 151 massive (M∗>1010M⊙M_* > 10^{10}\mathrm{M_\odot}) quiescent galaxies at 2<z<52 < z < 5, based on a sophisticated Bayesian spectral energy distribution fitting analysis of the CANDELS UDS and GOODS-South fields. Our sample includes a robust sub-sample of 61 objects for which we confidently exclude low-redshift and star-forming solutions. We identify 10 robust objects at z>3z>3, of which 2 are at z>4z>4. We report formation redshifts, demonstrating that the oldest objects formed at z>6z > 6, however individual ages from our photometric data have significant uncertainties, typically ∼0.5\sim0.5 Gyr. We demonstrate that the UVJ colours of the quiescent population evolve with redshift at z>3z>3, becoming bluer and more similar to post-starburst galaxies at lower redshift. Based upon this we construct a model for the time-evolution of quiescent galaxy UVJ colours, concluding that the oldest objects are consistent with forming the bulk of their stellar mass at z∼6−7z\sim6-7 and quenching at z∼5z\sim5. We report spectroscopic redshifts for two of our objects at z=3.440z=3.440 and 3.3963.396, which exhibit extremely weak Lyα\alpha emission in ultra-deep VANDELS spectra. We calculate star-formation rates based on these line fluxes, finding that these galaxies are consistent with our quiescent selection criteria, provided their Lyα\alpha escape fractions are >3>3 and >10>10 per cent respectively. We finally report that our highest-redshift robust object exhibits a continuum break at λ∼7000\lambda\sim7000A in a spectrum from VUDS, consistent with our photometric redshift of zphot=4.72−0.04+0.06z_\mathrm{phot}=4.72^{+0.06}_{-0.04}. If confirmed as quiescent this object would be the highest-redshift known quiescent galaxy. To obtain stronger constraints on the times of the earliest quenching events, high-SNR spectroscopy must be extended to z≳3z\gtrsim3 quiescent objects.Comment: 14 pages, 8 figures, MNRAS accepte
    • …
    corecore