650 research outputs found
ΠΡΠΌΠ°ΡΡ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ ΠΏΡΠΈ ΠΏΡΠΈΡ ΠΎΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΡ Ρ ΡΠ΅Π²ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ Π±ΠΎΠ»ΡΠ½ΡΡ (ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠΈΠ»Ρ ΠΌΡΡΠ»Π΅Π½ΠΈΡ Π²ΡΠ°ΡΠ°)
The concept of a 'health care realm' is introduced. The healthcare realms considered were those patients who have only Physical Health Problems (PH), patients with neither physical nor mental health issues and who are seeking advice to remain healthy (HP), patients only with Mental Health Problems (MH), patients with both Physical Health and Mental Health Problems (PH&MH) and patients with Psychosomatic Health conditions (PS). Described is how patients' minds and bodies interact and its relevance to rheumatology practice. Presented is the culmination of 34 years of the author's experience of rheumatological disorders based in Family Medicine in a United Kingdom General Practice. Also presented are 2 small studies supplementing the main conclusions. The first small study counted the main consultation content of 246 patients, as considered by the principals in the practice. Of these 73.5% were for physical health conditions, 13.3% for health promotion, 11.5% for mental health conditions and 1.8% for psychosomatic conditions. The second small study was a survey of experienced GPs, Physicians and Psychiatrists, asking about their opinions on how well the patients in different health care realms were being managed across the healthcare system. Of the 5 realms, the collective view was that it was the patients in the PH realm who was clearly received the best care. The least good care was being given to patients in the PS realm and only marginally better were patients in the MH Realm. This paper argues that clinicians need a different thinking approach when meeting patients from different healthcare realms. It is known that when doctors treat PH patients, they consider the patient's symptoms against templates of knowledge for the conditions in the differential diagnosis. Furthermore, HP patients are assessed by comparing the patient's bio-measurements against known markers of good health When being consulted by patients in the MH or PS realms, it is advocated, not to follow the approach of PH patients. For patients in the MH realm it is best to address the patient's life as a whole and to consider, how did the person arrive to the situation he is in and what needs to be done to restore the patient's life back on track. For patients in the PS realm, ideally the aim is to help the patient make the link between the physical symptom and its psychological aetiology. A step towards this is to describe how the body physically mediates the symptom.Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Β«ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠ°Ρ Π³ΡΡΠΏΠΏΠ°Β». ΠΡΠ΄Π΅Π»Π΅Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π³ΡΡΠΏΠΏΡ: ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ, Ρ ΠΊΠΎΡΠΎΡΡΡ
Π΅ΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅ΠΌ (ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π° β Π‘Π ); ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π±Π΅Π· Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π΄ΠΎΡΠΎΠ²ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΠ°ΡΠ°ΡΡΡΡ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π·Π΄ΠΎΡΠΎΠ²ΡΡ (Π‘Π); ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π΄ΠΎΡΠΎΠ²ΡΡ (ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π° β ΠΠ ); ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π΄ΠΎΡΠΎΠ²ΡΡ (ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π° β Π‘Π + ΠΠ ) ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ ΠΏΡΠΈΡ
ΠΎΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ (ΠΠ‘Π ). ΠΠ° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ (Π Π) ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅ΡΡ. Π‘ΡΠ°ΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΡΠΎΠ³ΠΎΠΌ 34-Π»Π΅ΡΠ½Π΅Π³ΠΎ ΠΎΠΏΡΡΠ° Π°Π²ΡΠΎΡΠ° Π² ΠΎΠ±Π»Π°ΡΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ Π Π Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ΅ΠΌΠ΅ΠΉΠ½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ ΠΈ ΠΎΠ±ΡΠ΅ΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΈ ΠΠ΅Π»ΠΈΠΊΠΎΠ±ΡΠΈΡΠ°Π½ΠΈΠΈ. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΠ°ΡΡΠΈ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Ρ Π΄Π°Π½Π½ΡΠΌΠΈ Π΄Π²ΡΡ
Π½Π΅Π±ΠΎΠ»ΡΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ. ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΎ 246 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΡΡΠ΅Π΄ΠΈ ΠΊΠΎΡΠΎΡΡΡ
73,5% ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΊΠΎΠ½ΡΡΠ»ΡΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ Π‘Π , 13,3% β Π‘Π, 11,5% β ΠΠ ΠΈ 1,8% β ΠΠ‘Π . ΠΡΠΎΡΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°Ρ
Π°Π½ΠΊΠ΅ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΡΠ½ΡΡ
Π²ΡΠ°ΡΠ΅ΠΉ ΠΎΠ±ΡΠ΅ΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΈ ΠΈ ΠΏΡΠΈΡ
ΠΈΠ°ΡΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ Ρ
ΠΎΡΠΎΡΠΎ, ΠΏΠΎ ΠΈΡ
ΠΌΠ½Π΅Π½ΠΈΡ, ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ ΡΠ°Π·Π½ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π³ΡΡΠΏΠΏ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠ°Ρ ΠΏΠΎΠΌΠΎΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π·Π΄ΡΠ°Π²ΠΎΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ. ΠΠΎ ΠΎΡΠ΅Π½ΠΊΠ°ΠΌ Π²ΡΠ°ΡΠ΅ΠΉ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΊΠ²Π°Π»ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΏΠΎΠΌΠΎΡΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π³ΡΡΠΏΠΏΡ Π‘Π , Π° Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΊΠ²Π°Π»ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ β ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π³ΡΡΠΏΠΏΡ ΠΠ‘Π , Π½Π΅ΠΌΠ½ΠΎΠ³ΠΈΠΌ Π»ΡΡΡΠ΅ Π±ΡΠ»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π΄Π»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π³ΡΡΠΏΠΏΡ ΠΠ . Π£ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠΈΡΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΎΡΠΎΠ±ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π² ΠΌΡΡΠ»Π΅Π½ΠΈΠΈ. ΠΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π‘Π Π²ΡΠ°ΡΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠΈΠΌΠΏΡΠΎΠΌΡ, ΠΎΠΏΠΈΡΠ°ΡΡΡ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΡΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π‘ΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π³ΡΡΠΏΠΏΡ Π‘Π ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΡΡΡ ΠΏΡΡΠ΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ Ρ
ΠΎΡΠΎΡΠ΅Π³ΠΎ Π·Π΄ΠΎΡΠΎΠ²ΡΡ. ΠΠ°ΡΠΈΠ΅Π½ΡΡ Π³ΡΡΠΏΠΏΡ ΠΠ ΠΈΠ»ΠΈ ΠΠ‘Π ΡΡΠ΅Π±ΡΡΡ ΠΈΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π°, ΡΠ΅ΠΌ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ Π‘Π . ΠΡΠΈ ΠΊΠΎΠ½ΡΡΠ»ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΠ ΡΡΠΎΠΈΡ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡΡ ΠΊ ΠΈΡΡΠΎΡΠΈΠΈ ΠΈΡ
ΠΆΠΈΠ·Π½ΠΈ ΠΈ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ, ΡΡΠΎ ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΊ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ ΠΈ ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, ΡΡΠΎΠ±Ρ Π²Π΅ΡΠ½ΡΡΡ Π΅Π³ΠΎ ΠΊ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ. ΠΡΠΈ Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Ρ ΠΠ‘Π Π²Π°ΠΆΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π΅Π³ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΈ ΠΈΡ
ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ, ΡΠ°Π·ΡΡΡΠ½ΠΈΠ², ΠΊΠ°ΠΊ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌ ΡΠ΅Π°Π³ΠΈΡΡΠ΅Ρ Π½Π° ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΠΎΠ»ΡΡΠΈΠ΅
Does the Third Law of Thermodynamics hold in the Quantum Regime?
The first in a long series of papers by John T. Lewis,
G. W. Ford and the present author, considered the problem of the most general
coupling of a quantum particle to a linear passive heat bath, in the course of
which they derived an exact formula for the free energy of an oscillator
coupled to a heat bath in thermal equilibrium at temperature T. This formula,
and its later extension to three dimensions to incorporate a magnetic field,
has proved to be invaluable in analyzing problems in quantum thermodynamics.
Here, we address the question raised in our title viz. Nernst's third law of
thermodynamics
An Introduction to the Source Concept for Antennas
Antenna parameters particularly relevant to electrically small antenna design are reviewed in this paper. Source current definitions are accentuated leading to the introduction of the source concept which advantageously utilize only spatially bounded quantities. The framework of the source concept incorporates powerful techniques such as structural and modal decomposition, operatorβs inversion and current optimization, thus opening new, challenging possibilities for antenna design, analysis and synthesis
Upper bounds on absorption and scattering
A general framework for determining fundamental bounds in nanophotonics is
introduced in this paper. The theory is based on convex optimization of dual
problems constructed from operators generated by electromagnetic integral
equations. The optimized variable is a contrast current defined within a
prescribed region of a given material constitutive relations. Two power
conservation constraints analogous to optical theorem are utilized to tighten
the bounds and to prescribe either losses or material properties. Thanks to the
utilization of matrix rank-1 updates, modal decompositions, and model order
reduction techniques, the optimization procedure is computationally efficient
even for complicated scenarios. No dual gaps are observed. The method is
well-suited to accommodate material anisotropy and inhomogeneity. To
demonstrate the validity of the method, bounds on scattering, absorption, and
extinction cross sections are derived first and evaluated for several canonical
regions. The tightness of the bounds is verified by comparison to optimized
spherical nanoparticles and shells. The next metric investigated is
bi-directional scattering studied closely on a particular example of an
electrically thin slab. Finally, the bounds are established for Purcell's
factor and local field enhancement where a dimer is used as a practical
example.Comment: 38 pages, 16 figure
On apparent breaking the second law of thermodynamics in quantum transport studies
We consider a model for stationary electronic transport through a
one-dimensional chain of two leads attached to a perturbed central region
(quantum dot) in the regime where the theory proposed recently by Capek for a
similar model of phonon transport predicts the striking phenomenon of a
permanent current between the leads. This result based on a rigorous but
asymptotic Davies theory is at variance with the zero current yielded by direct
transport calculations which can be carried out in the present model. We find
the permanent current to be within the error of the asymptotic expansion for
finite couplings, and identify cancelling terms of the same order.Comment: 5 pages, 3 figure
Characteristic modes β progress, overview, and emerging topics
Over the past decade, characteristic mode analysis (CMA) research has grown from a niche topic to a mainstream topic, warranting a tutorial-style special issue to survey the signiο¬cant progress that has been made in this ο¬eld. In thisintroductory article (PAPER 1), the focus is on providing the big picture. We start with a simple description of characteristic modes. Next, we examine the trends in this ο¬eld, followed by providing further insights into CMAβs historical development. We will also address common myths surrounding the subject. Then, leaving the detailed coverage of major topics to the following papers, we summarize recent applications of CMA in scattering and other emerging topics. Finally, we conclude with some future perspectives on this ο¬eld
- β¦