
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Upper bounds on absorption and scattering

Gustafsson, Mats; Schab, Kurt; Jelinek, Lukas; Capek, Miloslav

2019

Link to publication

Citation for published version (APA):
Gustafsson, M., Schab, K., Jelinek, L., & Capek, M. (2019). Upper bounds on absorption and scattering. (TEAT;
Vol. 7268).

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/39876f59-762e-4d69-90f2-44f2378259dd


Electromagnetic Theory
Department of Electrical and Information Technology
Lund University
Sweden

(T
E
A
T
-7268)/1-37/(2019):

B
O
O
M
,
U
p
p
er

b
ou
n
d
s
on

ab
sorp

tion
an
d
scatterin

g

CODEN:LUTEDX/(TEAT-7268)/1-37/(2019)

Upper bounds on absorption and

scattering

Brat°ice Optimal Optics Meeting (BOOM)

Held on September 3-6, 2019, in Brat°ice, Czech Republic. For more
information see https://elmag.fel.cvut.cz/ESAworkshops.

http://www.eit.lth.se/teat
https://elmag.fel.cvut.cz/ESAworkshops


Mats Gustafsson
mats.gustafsson@eit.lth.se

Department of Electrical and Information Technology
Electromagnetic Theory
Lund University
P.O. Box 118
SE-221 00 Lund
Sweden

Kurt Schab
kschab@scu.edu

Santa Clara University,
Santa Clara, CA 95053,
USA

Lukas Jelinek
lukas.jelinek@fel.cvut.cz

Department of Electromagnetic Field,
Faculty of Electrical Engineering,
Czech Technical University in Prague,
166 27 Prague,
Czech Republic

Miloslav Capek
miloslav.capek@fel.cvut.cz

Department of Electromagnetic Field,
Faculty of Electrical Engineering,
Czech Technical University in Prague,
166 27 Prague,
Czech Republic

This is an author produced preprint version as part of a technical report series
from the Electromagnetic Theory group at Lund University, Sweden. Homepage
http://www.eit.lth.se/teat

Editor: Mats Gustafsson
c© Mats Gustafsson, Kurt Schab, Lukas Jelinek, and Miloslav Capek, Lund,

December 12, 2019

http://www.eit.lth.se
http://www.eit.lth.se/teat


1

Abstract

A general framework for determining fundamental bounds in nanophoton-

ics is introduced in this paper. The theory is based on convex optimization of

dual problems constructed from operators generated by electromagnetic inte-

gral equations. The optimized variable is a contrast current de�ned within a

prescribed region of a given material constitutive relations. Two power conser-

vation constraints analogous to the optical theorem are utilized to tighten the

bounds and to prescribe either losses or material properties. Thanks to the

utilization of matrix rank-1 updates, modal decompositions, and model order

reduction techniques, the optimization procedure is computationally e�cient

even for complicated scenarios. No dual gaps are observed. The method

is well-suited to accommodate material anisotropy and inhomogeneity. To

demonstrate the validity of the method, bounds on scattering, absorption,

and extinction cross sections are derived �rst and evaluated for several canon-

ical regions. The tightness of the bounds is veri�ed by comparison to op-

timized spherical nanoparticles and shells. The next metric investigated is

bi-directional scattering studied closely on a particular example of an electri-

cally thin slab. Finally, the bounds are established for Purcell's factor and

local �eld enhancement where a dimer is used as a practical example.

1 Introduction

As the �eld of nanophotonics becomes more mature, interest is shifting away from
the analysis of simple systems (uniform waveguides, spheres, rods, etc.) and toward
the synthesis of structures with engineered electromagnetic behavior, e.g., maximal
absorption [39], directional emission [10, 17], directed scattering [8, 34], �uorescence
diplexing [60], waveguide power division [37], �eld con�nement [33], and waveguide
diplexing (wavelength splitters) [46]. In order to generate novel geometries opti-
mized for these particular design objectives, computational inverse design is often
employed, see, e.g., [5, 40] and the references therein. While such methods excel in
the exploration of extremely broad design spaces and the discovery of non-intuitive
solutions, there nevertheless exists a strong need for analytic results which inform,
direct, and truncate their computationally intensive calculations [40].

Physical bounds on performance objectives constitute a particular class of ana-
lytic results that aid inverse design in this way. For example, rather than searching
for a design which achieves a particular objective value, one may instead employ in-
verse design tools to search for an optimal design with superior performance over all
other possible structures satisfying some �xed constraints. In searching for this op-
timal design, the determination of physical bounds is critical in comparing realized
performance to the theoretical optimum. Additionally, secondary analytic results
and features of optimal designs may often be obtained through the process of deriv-
ing physical bounds, as in the study of optimal antennas operating in the microwave
regime. These secondary results add understanding to the behavior of optimal de-
signs and may provide valuable input to specialized inverse design algorithms, e.g.,
starting points or feature de�nitions.
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Several approaches have previously been applied to calculate physical bounds
on the performance of nanophotonic structures, though each of these methods has
unique limitations. One approach is to analyze the broadband characteristics of scat-
terers using passivity-based sum rules [53]. Sum rules of this kind lead to important
conclusions regarding many practical applications (e.g., cloaking [42]), though they
fail to o�er insight into performance bounds at single frequencies. Attempts to com-
bine sum rules with other methods of calculating bounds rely on assuming simple
frequency domain responses, e.g., Lorentzian line shapes [51]. Alternatively, anal-
ysis may be restricted to canonical structures, such as layered spheres (�core-shell
structures�), where the low number of degrees of freedom allows for tight brute force
optimization [50]. Dipolar interaction for electrically small structures is analyzed
in [47], spherical mode expansions in [32], and e�ects of lossy background media
in [23].

Based primarily on the optical theorem, shape independent bounds exist [37]
assuming uniform �elds and neglecting e�ects of electric size and shape. These
bounds depend only on the relative volume of an object and its material properties.
Shape independent bounds of this kind are necessarily loose and, in general, can
only be approached by inverse design procedures in special cases. In the interest of
driving optimal design, there is a need to tighten this class of bounds by making
them dependent on both material and the shape of the allocated design region.
Shape dependent bounds adapted in this way for maximum radiative heat transfer
are given in [39, 59]. Shape dependent bounds for maximum absorption are given
in [38] and for photonic design in [1].

Unlike in photonics, the development of shape dependent bounds is fairly ma-
ture in the area of antenna theory, where the task of optimizing many important
physical parameters may be cast as convex optimization problems in an unknown
current distribution. Once the operator framework relating source currents to vari-
ous metrics (e.g., gain, Q-factor, e�ciency) is established, the development of new
bounds reduces to the task of manipulating and combining optimization problems
of canonical forms. Because of the convex (or relaxed) nature of such optimization
problems [7], their solution is deterministic, many times reducing to the solution of
a single eigenvalue problem. Expressing unknown currents in a �nite dimensional
basis, the �nite dimensional matrix operators governing quantities of interest may be
readily calculated using the tools developed for solving integral equation problems
[15], i.e., using the method of moments [20]. Problems in antenna theory solved
in this way include maximization of directive gain [13, 25, 58], maximization of ra-
diation e�ciency [25, 26, 49], minimization of Q-factor (analogous to maximizing
bandwidth) [9, 14], and the trade-o� between these parameters [13, 16].

The purpose of this paper is to transfer this general approach to the �eld of
optics, where the fundamental electromagnetic physics remain the same as in clas-
sical antenna theory but the metrics of interest shift from antenna parameters to
quantities related to scattering, absorption, extinction, and local �eld enhancement.
To carry this out, we �rst develop a framework in which to discuss quantities of
interest (e.g., scattered power, local �elds) in terms of operators acting on current
densities con�ned to a region of interest. This general methodology is shared by
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previous work [37], though here we use notation and nomenclature based heavily on
the numerical solution of integral equations in antenna theory [20] which has been
used extensively used for developing bounds in that area [15]. We then proceed
by formulating optimization problems giving rise to shape-speci�c bounds on ab-
sorption, scattering, and extinction cross sections as well as local �eld enhancement
(Purcell's factor) and directive scattering. We formulate each bound using two sets
of constraints governing the enforcement of material constitutive relations. In a few
certain cases, the bounds derived here replicate previous results, however we include
them here to highlight the generality and �exibility of the approach taken. Numeri-
cal examples are calculated for each derived bound and serve to demonstrate salient
features.

2 Physical components of problems

The main goal of this paper is to �nd bounds on various scattering and absorption
metrics by formulating optimization problems which are either convex or can be
relaxed to a convex form. Because many of the components and features are shared
between several problems, we begin with an overview of the objectives and con-
straints used throughout the rest of the paper. Note that throughout the entirety of
the paper, time harmonic steady state is assumed and all quantities are implicitly
functions of angular frequency ω with exp(−iωt) dependence. The wavenumber k =
ω/c0 is always that of free space, with c0 being the speed of light in vacuum. Hori-
zontal axes in �gures show free-space wavelength λ = 2π/k, which is in many cases
normalized with respect to the radius a of the smallest sphere circumscribing the
scatterer.

2.1 Objectives

The physical quantities investigated in this paper may be represented using linear

ζ1 =

∫
Ω

a∗(r) · J(r) dV (2.1)

or sesquilinear (quadratic)

ζ2 =

∫
Ω

∫
Ω

J∗(r1) ·A(r1, r2) · J(r2) dV2 dV1 (2.2)

forms in a current density distribution J(r), with all integrations taken over the
current's entire spatial support Ω ⊂ R3, see Fig. 1. Without loss of generality, we
assume an appropriate basis {ψn(r)} for the current density, e.g.,

J(r) ≈
N∑
n=1

Inψn(r), (2.3)

is chosen in which these forms reduce to linear

ζ1 ≈ aHI (2.4)
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Figure 1: An incident electromagnetic �eld (represented by Ei) generating a scat-
tered �eld (represented by Es). The original problem (a) can be formulated as an
equivalent problem (b), where the �elds in the presence of (potentially inhomoge-
neous) materials are replaced by the contrast current density J impressed in vacuum
and radiating the same scattered �eld Es. See App. A for more details.

or quadratic
ζ2 ≈ IHAI (2.5)

forms involving vectors and matrices. For clarity (and compatibility with �nite
dimensional optimization tools) we only consider the vector/matrix forms except
when their equivalence to the forms in (2.1) and (2.2) yields additional insight.

Here we brie�y describe the physical interpretation and mathematical properties
of the vector and matrix operators describing quantities used in optimization prob-
lems throughout this paper. The exact formulation of these operators are not given
here but are readily available in the literature [15, 19, 20]. The following discussion
assumes that the matrix or vector forms of all operators strictly follow the analytic
features (e.g., de�niteness) of their continuous counterparts.

2.1.1 Radiated power, absorbed power, and reactance

The total cycle-mean power radiated Pr and absorbed Pa by an arbitrary current I
may be cast as quadratic forms [15]

Pr =
1

2
IHR0I, (2.6)

and

Pa =
1

2
IHRρI, (2.7)

respectively. Notice that rigorously the power Pr refers to a cycle-mean scattered
power since the current density I represents an equivalent contrast source situated
in vacuum, see Fig. 1 and App. A for more details. As currents should not radiate
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negative power we have Pr ≥ 0 for all currents and equivalently R0 � 0. Similarly
for currents in lossy media we have Pa ≥ 0 and thus Rρ � 0. Both operators are
real symmetric, and their sum Pr +Pa represents the total cycle mean real power Pt

released by the current I, i.e.,

Pt = Pr + Pa =
1

2
IH (R0 + Rρ) I =

1

2
IHRI. (2.8)

Employing spherical wave decomposition, the symmetric positive de�nite radia-
tion operator R0 may be constructed [55] as

R0 = SHS, (2.9)

where the inner dimension of the matrix S depends on the number of spherical
harmonics used. The number of necessary spherical harmonics, and thus the rank
of R0, may be approximated using the electrical size of the current support under
consideration. In general, electrically smaller support regions correspond to lower
rank.

The reactance of a current, or equivalently the cycle mean di�erence in stored
magnetic and electric energies, Wm and We, may be calculated via the quadratic
form [21]

2ω (Wm −We) =
1

2
IHXI. (2.10)

The reactance matrix X is real symmetric and, in most cases, inde�nite. Like the
operator R, the matrix X may be decomposed into two components, one material
dependent and one material independent, see Sec. 2.3. Together, the matrices R
and X constitute the impedance matrix Z = R− iX, see Sec. 2.2 and App. A.

2.1.2 Radiation intensity

The scattered �eld component ê ·Es(r) produced by the current I in the r̂ = r/|r|
direction at distance r →∞ with polarization ê is represented by the linear form

lim
r→∞

ê · Es(r)√
η0

re−ikr = FHI (2.11)

such that the corresponding partial radiation intensity is [2]

U(r̂, ê) =
1

2
|FHI|2 =

1

2
IHFFHI. (2.12)

From the above expression we observe the rank-1 nature of the operator FFH, a
feature that will enable certain problems to be solved in a computationally e�cient
manner. Note that the operator FFH depends directly on the observation direction
and polarization. Like the total absorbed and radiated power operators, the operator
FFH is positive semi-de�nite and Hermitian symmetric.
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2.1.3 Radiation enhancement and Purcell's factor

The cycle mean power radiated by an electric dipole moment p in the presence of a
scatterer is [24]

Pr = −ω
2

Im{p∗ ·Es(rp)}+ Pr,p − Pa, (2.13)

where Es (rp) is an electric �eld generated by the scatterer at the point of the
dipole, Pa is the cycle mean power lost within the scatterer (2.7) and

Pr,p =
c0k

4

12πε0
|p|2 (2.14)

is the cycle mean power radiated by the dipole in free space, with ε0 being permit-
tivity of vacuum (the assumed background medium).

Analogously to the electric far �eld in (2.11), the following linear form can be
de�ned

− ω

2
Im{p∗ ·Es(r0)} =

1

2
Re{IHN}, (2.15)

from which a Purcell's factor [44] can be de�ned as

F =
Pr

Pr,p

= 1 +
Re{IHN} − IHRρI

2Pr,p

(2.16)

which assumes that the back reaction of the dipole to the scatterer may be ne-
glected [29, 30]. This Purcell's ratio characterizes radiation enhancement provided
by the scatterer, a metric of primary importance in many areas of applied optics.

Note that unlike in (2.16), Purcell's factor might also be de�ned without the
subtraction of the loss term [30]. Although in the experimental characterization this
might be the only option, evaluating bounds on Purcell's factor in the presence of
realistic scatterers without subtracting losses leads to bounds that are too optimistic,
as the Purcell's factor may be increased through absorption rather than radiation.

2.2 Real and reactive power constraints

An incident electric �eld Einc(r) may be projected onto the chosen basis in (2.3) via

Ei(r)→ V : Vm =

∫
Ω

ψm(r) ·Ei(r) dV. (2.17)

Such an excitation V uniquely induces a current distribution I obeying

ZI = (R− iX)I = V, (2.18)

where Z is the impedance matrix representing the underlying integral operator map-
ping currents to �elds [20], see App. A for more details. For the purpose of formu-
lating general bounds on the behavior of currents existing with a given support, we
relax this expression through testing with the current itself, i.e.,

IHZI = IH(R− iX)I = IHV, (2.19)
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which is an algebraic representation of power conservation [24, �6.9], see App. A for
more details. Considering the excitation �eld V is given, two power constraints are
introduced from (2.19) as

IHRI− Re{IHV} = 0, (2.20)

IHXI + Im{IHV} = 0, (2.21)

representing the conservation of real (cyclic mean) and reactive power, respectively.
The expression in (2.20) may be interpreted as a form of the optical theorem relating
the total extincted power to that removed from the incident �eld [24, �10.11]. For
plane wave incidence the equivalence to the optical theorem may be further used to
relate the extincted power to a forward scattering amplitude.

As discussed in greater detail in 2.4, use of the constraint in (2.20) within an op-
timization over the current I amounts to enforcing both loss and radiation properties
of an object when illuminated by the incident �eld V. For this reason we denote the
use of this constraint as using �prescribed losses� (indicated throughout the paper
by the subscript R). Similarly, inclusion of the constraint in (2.21) enforces material
reactance properties, so together the use of (2.20) and (2.21) is denoted as using
�prescribed materials� (indicated throughout the paper by the subscript Z).

2.3 Material properties and contrast current

Throughout this paper we consider isotropic1, non-magnetic materials with the con-
stitutive relation

D = εE = ε0(1 + χ)E, (2.22)

where ε is the frequency dependent permittivity and χ is the frequency dependent
susceptibility. In the presence of the electric �eld E, the contrast (polarization)
current density J may be written in terms of the complex resistivity ρ as

J = −iωε0χE = ρ−1E, (2.23)

where ρ has real and imaginary parts

ρ = ρr + iρi =
Imχ

ωε0|χ|2
+ i

Reχ

ωε0|χ|2
=
η0 Imχ

k|χ|2 + i
η0 Reχ

k|χ|2 . (2.24)

The real part of resistivity ρr is related to a material �gure of merit ζ = |χ|2/ Imχ
introduced in [37, 38] as ρr/a = η0/(ζka). This last equality can be used in Sec. 3.1
to directly compare the results obtained in this paper with the results obtained
in [38].

Under the discretization in (2.3), the complex resistivity governs the nature of
certain physical quantities and their associated operators. In general the radiation

1Notice that addition of anisotropy and lossless dielectric background media introduces no

di�culties. In such a case, the susceptibility becomes a second-rank tensor χ and its inversion

must be interpreted as a matrix inverse.
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Ω
∂Ω

Ωε

ε (r)ε0

ε0

ε0
Ei

Es

a)

Ω
∂Ω

Ωε

ε0 J (r)

b)

Figure 2: Geometry used to determine the maximum absorption, scattering, and
extinction of obstacles con�ned to the region Ω and having permittivity ε. a) The
incident Ei and Es scattered �elds propagate in the background permittivity ε0 and
the obstacle has permittivity ε in the arbitrary subregion Ωε ⊆ Ω. b) Representation
using contrast current density (2.23) J with support supp(J) ⊆ Ωε.

operator R0 does not depend on the resistivity, while the loss operator depends on
its real component ρr, i.e.,

R = R0 + Rρ. (2.25)

The situation is analogous for the reactance operator

X = X0 + Xρ. (2.26)

For homogeneous bodies, the matrices Rρ and Xρ scale linearly with the real and
imaginary components of the resistivity, respectively.

2.4 Formulating bounds using optimal currents

In the remainder of the paper, we formulate bounds maximizing absorption, scat-
tering, and extinction cross sections, directed scattering, and Purcell's factor for
an obstacle with resistivity ρ = ρr + iρi con�ned to a region Ω, excited by a pre-
scribed incident �eld. To do this, we construct and maximize relevant quantities
over all possible current density distributions J supported in Ω, subject to certain
constraints and �xed material parameters. These constraints (see (2.20) and (2.21))
enforce conservation of particular quantities (e.g., real power) but do not mandate
that the optimized current be directly excitable by a given incident �eld. In this
way, the formulated optimization problems yield bounds for all possible structures
Ωε ⊆ Ω supported within the region Ω consisting of either the structure medium
(permittivity ε) or the background medium (background permittivity ε0), as shown
in Fig. 2. Notice that the exclusion of a given subregion is realized in this paradigm
by setting the contrast current density equal zero in that subregion. Because the
optimization method is allowed to set currents within any such subregion in Ω to
zero, all possible exclusions are automatically considered. This concept of searching
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for optimal currents has extensively been used in the study of bounds on antenna
performance [15].

As stated previously, we may interpret the application of the real power conser-
vation bound in (2.20) as enforcing only the prescription of material losses ρr. The
imaginary (reactive) part of the resistivity ρi does not enter into this constraint and
may be considered to be chosen freely. This implies that, under only the constraint
of (2.20), the conservation of reactive power in (2.21) may always be satis�ed by a
suitable a posteriori choice of bulk reactivity ρi. When both the conservation of real
power (2.20) and of reactive power (2.21) are used, an optimization problem with
two constraints is formed which is always more restrictive then the former, since
now the reactance part of resistivity ρi is prescribed prior to the optimization.

Application of both constraints in (2.20) and (2.21) e�ectively allows for the
calculation of bounds on structures synthesized from fully known and character-
ized materials (such as gold). Though looser, application of only the real power
bound (2.20), allows for the examination of hypothetical future materials which
may have �xed losses but tunable bulk reactivity.

3 Maximization of cross sections

In this section we study upper bounds on the absorption, scattering, and extinction
cross sections, denoted as σa, σs, and σt, respectively, achievable by an arbitrary
object constructed of material with resistivity ρ con�ned to the support Ω. In
all cases, a �xed incident �eld V is assumed which, in the case of cross sections,
corresponds to a plane wave [6, 31]. Two forms of constraints are considered. We
begin with the simpler of the two, where only the real part ρr of the resistivity is
prescribed (corresponding to constraint (2.20)). We then extend the problem to
include both real and imaginary components of the resistivity (corresponding to
both (2.20) and (2.21)), see Tab. 3.1 for corresponding section numbers for each
problem.

3.1 Prescribed losses

3.1.1 Absorption

Maximization of the absorbed power (2.7) with prescribed losses over all possible
current densities is determined by the solution to the optimization problem

maximize Pa

subject to Pa + Pr = Pt,
(3.1)

which can, with the help of Sec. 2.1.1, be written as a primal QCQP

maximize IHRρI

subject to IH(Rρ + R0)I− Re{IHV} = 0.
(3.2)
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Constraints Relative
Problem Quantity (2.20) (2.21) Complexity Section

maximum absorbed power Pa,R X ?? 3.1.1
Pa,Z X X ? ? ? 3.2.1

maximum scattered power Pr,R X ?? 3.1.2
Pr,Z X X ? ? ? 3.2.2

maximum extincted power Pt,R X ? 3.1.3
Pt,Z X X ?? 3.2.3

maximum radiation intensity UR X ? 4.1
UZ X X ?? 4.2

maximum Purcell's factor FR X ?? 5.1
FZ X X ? ? ? 5.2

Table 1: Optimization problems solved in the paper.

This QCQP is not convex [7] but can be analyzed using the techniques in App. B.
Particularly, the maximum absorbed power is determined from solution to a dual
problem

Pa,R = min
ν>1

ν2

8
VH
(
(ν − 1)Rρ + νR0

)−1
V, (3.3)

where the condition ν > 1 follows from the low-rank representation of the matrix R0,
see App. B for more details. This dual problem can directly be solved using a line
search algorithm such as the Newton or bisection algorithms [7]. Like many of the
other problems detailed in later sections, solution to (3.3) can advantageously be
formulated in a basis Q which simultaneously diagonalize the operators Rρ and R0.
Vectors of this basis (columns In of matrix Q) are called radiation modes, see App. C,
and are the solution to a generalized eigenvalue problem [12]

R0In = %nRρIn. (3.4)

The radiation matrix R0 is known to be of low rank, and can advantageously be
decomposed as R0 = SHS, see [55]. The loss matrix Rρ is a sparse full rank pos-
itive de�nite matrix and can be decomposed via a Cholesky decompostion [12]
as Rρ = ΥHΥ. Substituting into (3.4) and using a singular value decomposi-
tion (SVD) [12] SΥ−1 = U1ΣUH

2 , where matrices U1,U2 are unitary and matrix Σ
is diagonal, it can be shown that %n = Σ2

nn and Q = Υ−1U2.
Assuming I = QĨ, the minimization problem (3.3), normalized to incident power

�ux S0, can be rewritten as

σa,R = min
ν>1

ν2

8S0

N∑
n=1

∣∣Ṽn∣∣2
ν(1 + %n)− 1

= min
ν>1

ν2

4k2

N∑
n=1

%n|ãn|2
ν(1 + %n)− 1

, (3.5)

where Ṽ = QHV. The second equality in (3.5) assumes that the excitation vector
has been composed of spherical waves as V = SHa/(k

√
η0), where a are dimen-

sionless spherical wave expansion coe�cients of an incident plane wave with unit



11

amplitude, see App. C. A projection ã = UH
1 a has also been de�ned to ease the

notation.
As shown in App. B, the form in (3.5) (as compared to (3.3)) allows for simple

analytical evaluation of the �rst and second derivative with respect to the Lagrange
multiplier ν being well prepared for a minimization via Newton's algorithm. Fur-
thermore, the summation involved in (3.5) converges quickly in realistic scenarios,
since for small electrical sizes (ka ≤ 1), the eigenvalues %n decay rapidly in n and
only a few terms are needed, see App. C. Notice that a similar decomposition was
implicitly used in [38, Eq. 4, 5] to solve a related optimization problem.

3.1.2 Scattering

Maximization of the scattered power is determined by interchanging Rρ and R0

in (3.2) and (3.3) which gives

maximize IHR0I

subject to IH(Rρ + R0)I− Re{IHV} = 0
(3.6)

with the dual problem

Pr,R = min
ν>ν1

ν2

8
VH
(
νRρ + (ν − 1)R0

)−1
V, (3.7)

where ν1 = %1/(1 + %1) with %1 the largest eigenvalue (3.4) for the radiation modes.
Observe that this value of ν1 coincides with the maximum radiation e�ciency for
antennas restricted to the region Ω [16].

Analogously to the bound on the absorption cross section in (3.5), the bound on
the scattering cross section can be written in terms of radiation modes as

σs,R = min
ν>ν1

ν2

8S0

N∑
n=1

∣∣Ṽn∣∣2
ν (1 + %n)− %n

= min
ν>ν1

ν2

4k2

N∑
n=1

%n|ãn|2
ν (1 + %n)− %n

. (3.8)

3.1.3 Extinction

The maximum extincted power is determined from maximization of the total cycle
mean power Pt. In this case, the power balance in (2.19) can be used to greatly
reduce the complexity of the problem into

maximize Re{VHI}
subject to IH(Rρ + R0)I− Re{IHV} = 0

(3.9)

with the explicit solution

Pt,R =
1

2
VH(Rρ + R0)

−1V =
1

2
VHR−1V. (3.10)

This expression is also recognized from bounds on the maximum e�ective area Ae

of antennas restricted to region Ω [13].
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Following the same methodology as applied to absorption and scattering, the
maximum extinction cross section (3.10) can be written in terms of radiation modes
as

σt,R =
1

2S0

N∑
n=1

∣∣Ṽn∣∣2
1 + %n

=
1

k2

N∑
n=1

%n|ãn|2
1 + %n

. (3.11)

3.1.4 Electrically small scatterers

Although the bounds in (3.5), (3.8), and (3.11) are easily determined for an arbi-
trary shaped geometry, their explicit approximations depending only on resistivity
ρr, volume V , and free-space wavenumber k are of great interest [37]. Such approx-
imation is possible in the limit of small electric sizes ka = 2πa/λ� 1. In this case
it can be assumed that the summations in (3.5), (3.8) and (3.11) are dominated by
the �rst term. If only this dominant term (n = 1) is kept, an analytical solution
exists in all three cases and reads

σa,R
ka�1≈ %1|ã1|2

k2(1 + %1)2
=

η0V

ρr
Ä
1 + η0k2V

6πρr

ä2 ≤ ®η0V/ρr = σa,ρr
3π/(2k2) = σa,d

(3.12)

σs,R
ka�1≈ %21|ã1|2

k2(1 + %1)2
=
k2

6π

Ä
η0V
ρr

ä2Ä
1 + η0k2V

6πρr

ä2 ≤ k2η20V 2/(6πρ2r )

η0V/(4ρr) = σs,ρr
6π/k2 = σs,d

(3.13)

σt,R
ka�1≈ %1|ã1|2

k2(1 + %1)
=

η0V

ρr
Ä
1 + η0k2V

6πρr

ä ≤ ®η0V/ρr
6π/k2

(3.14)

where the dominant radiation mode %1 ≈ η0k
2V/(6πρr) and the projection of the

plane wave on a dipole mode |ã1|2 = 6π for ka� 1 have been used, see App. C.
Relation (3.12) shows that the absorption cross section is, in the limit of small

electric size, bounded by σa,ρr introduced in [37] and by the dipole bound σa,d [56].
The material-only bound is valid for all electrical sizes [37] and is obtained by ne-
glecting the radiation term R0 in (3.3). The dipole bound is restricted to dipole
interaction and can be obtained from the directivity, D, and gain G, of a lossless
Hertzian dipole D = G = 3/2 having e�ective area λ2G/(4π) = 3π/(2k2) [52]. These
two bounds intersect at k =

√
3πρr/(2η0V ). The bound σa,R has a maximum for

%1 = 1 but decreases monotonically with increasing wavenumber k for electrically
small objects. The single term (dipole) approximation is not valid as ρr → 0 since
the dipole contribution to the absorption is negligible and therefore it is necessary
to include higher order terms.

Results for bounds on scattering cross section (3.13) show three distinct regions at
small electrical sizes as compared with the two for the absorption cross section (3.12).
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The scattering cross section �rst increases with k2 reaching its maximum σs,ρr for
the wavenumber

ks =

 
6πρr
η0V

(3.15)

after which it deceases with k−2. Small self-resonant objects are often minimum
scattering [28, 41] and hence σa = σs which implies %1 = 1 which is recognized
as (3.15) and from the maximum of (3.13).

The small electric size limit of the bound on the extinction cross section (3.14)
is similar to the two previous cases.

3.1.5 Numerical examples
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σ
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2
)

ρr

2a

ρr/a = 0.1 Ω
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105

ρr/a = 1 Ω
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σ
/(
πa

2
)

σt,R

σa,R σa,ρr σa,d

σs,R σs,ρr σs,d

10−1 100 101 102 103

ρr/a = 10 Ω

λ/(2πa) = (ka)−1

Figure 3: Comparison between bounds on absorption (3.5), scattering (3.8),
and extinction (3.11) cross sections for obstacles with resistivities (2.24) ρr/a ∈
{0.01, 0.1, 1, 10}Ω circumscribed by a sphere with radius a. The bounds are com-
pared with the material-only σ∗,ρr and dipole σ∗,d bounds from the electrically small
approximations (3.12) and (3.13).

Bounds on absorption, scattering, and extinction cross sections are depicted in
Fig. 3 for obstacles supported in a spherical region with radius a and resistivities
ρr/a ∈ {0.01, 0.1, 1, 10}Ω. The bounds are computed using an analytical prescrip-
tion for radiation modes of a sphere (C.1), normalized with the geometrical cross
section Across = πa2, and shown for electric sizes 10−3 ≤ ka ≤ 102. Compared
with the small-size approximations from Sec. 3.1.4 (dashed and dotted lines) it is
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Figure 4: Bounds on absorption (3.5), scattering (3.8), and extinction (3.11) cross
sections for spherical regions compared with realized cross sections of solid spheres
and spherical shells homogeneously �lled with resistivity (2.24) ρr/a = 1 Ω and
optimized reactance ρi and shell thickness.

observed that σa,R follows σa,ρr [37] up to k = ks/2, cf., (3.15), where the small size
approximations (3.12) intersect. Then the bound follows the dipole approximation
until the structure starts to support higher order modes. The maximum of σs,R is
reached at k = ks and is well described by the small size approximation (3.13). The
dipole approximations are most useful for low-loss cases where they approximate the
bounds over a large range of frequencies. The approximate onset of di�erent radia-
tion modes can be found from the condition %n ≈ 1, with the radiation modes for
the sphere in (C.1) depicted Fig. 13. The �rst mode reaches %1 ≈ 1 at ka ≈ ksa =√

9ρr/(2η0a) ≈ {0.01, 0.03, 0.11, 0.35} and dominates the cross sections until the

onset of the second mode (%2 ≈ 1) at ka ≈ 4
√

18ρr/(η0a) ≈ {0.15, 0.26, 0.47, 0.83},
where a 4

√
ρr scaling in ρr for the second mode is also seen.

The bounds increase monotonically with decreasing resistivity ρr and are un-
bounded in the limit ρr → 0. This increase is, however, slow for k > ks and negligible
in the limit of electrically large structures where σa,R approaches the geometrical
cross section Across and σs,R, σt,R approach 4Across. Notice that the bound σa,R is
similar to that derived in [38]. The results shown in Fig. 3 for σa,R can therefore
be compared with those in Fig. 2 from [38] taking into account the relation ρr/a =
η0/(ζka).

Tightness of the bounds is investigated in Fig. 4, where the realized cross sections
for solid spheres and spherical shells are compared with the bounds. The imaginary
part ρi = Im{ρ} and shell thickness are swept numerically for each electric size and
the maximum realized cross sections are depicted in Fig. 4. Solid spheres reach the
bounds for small electric sizes ka ≤ 0.1 but are slightly below the bounds for larger
sizes. Optimization over the layer thickness increases the cross sections slightly but
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Figure 5: Comparison between bounds on absorption (3.5) and scattering (3.8) cross
sections for spheroids with resistivity (2.24) ρr/a ∈ {0.01, 0.1, 1, 10}Ω as function of
the electrical size.

does not reach the bounds.
Bounds on absorption and scattering cross sections for obstacles circumscribed

by spheroidal regions with semi axes ar and az and an incident plane wave from the
ẑ-direction are depicted in Fig. 5. The overall behavior of the bounds for circum-
scribing spheres in Fig. 3 and spheroids are similar. A decrease for electrically small
spheroid as compared with the sphere ar = az is explained by the reduced volume,
see (3.12) and (3.13).

3.2 Prescribed materials

Here we adapt the physical bounds in Sec. 3.1 to a stricter form where both real
and imaginary components of the resistivity ρ are �xed.

3.2.1 Absorption

Adding the reactance condition (2.21) to the optimization problem in (3.2) for max-
imizing the absorbed power, we obtain

maximize IHRρI

subject to IHRI− Re{IHV} = 0

IHXI− Im{IHV} = 0

(3.16)
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and the dual problem (see App. B)

Pa,Z = min
(ν,µ)∈D

ν2 + µ2

8
VH
(
−Rρ + νR + µX

)−1
V, (3.17)

where D = {(ν, µ) : −Rρ + νR + µX � 0}.

3.2.2 Scattering

The scattering cross section is similarly obtained by interchanging R0 and Rρ giving
the primal problem

maximize IHR0I

subject to IHRI− Re{IHV} = 0

IHXI− Im{IHV} = 0

(3.18)

and the dual problem

Pr,Z = min
(ν,µ)∈D

ν2 + µ2

8
VH
(
−R0 + νR + µX

)−1
V, (3.19)

where D = {(ν, µ) : −R0 + νR + µX � 0}.

3.2.3 Extinction

For the extinction cross section, the optimization problem with both constraints is

maximize Re{IHV}
subject to IHRI− Re{IHV} = 0

IHXI− Im{IHV} = 0

(3.20)

yielding the dual function

Pt,Z = min
(ν,µ)∈D

=
(1 + ν)2 + µ2

8
VH(νR + µX)−1V, (3.21)

where D = {(ν, µ) : νR + µX � 0}. Substituting µ = νµ1 and carrying out
the minimization over ν (now entirely outside of the matrix inversion) gives ν =
±1/

√
1 + µ2

1, which simpli�es (3.21) to

Pt,Z = min
+,−

min
µ1∈D1±

1±
√

1 + µ2
1

4
VH(R + µ1X)−1V. (3.22)

Since the optimization problem (3.22) only involves two matrices, it can still be,
analogously to problems in Sec. 3.1, diagonalized using a basis Q with basis vectors
(columns In of matrix Q) generated by an eigenvalue problem

XIn = λnRIn. (3.23)
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These eigenmodes resemble characteristic modes [21], though here, unlike the classi-
cal formulation for characteristic modes on perfectly conducting bodies, the operator
R contains terms related to both loss and radiation and thus alters the modal set's
orthogonality properties [22].

Normalizing QHRQ to be an identity matrix, QHXQ is a diagonal matrix of
eigennumbers λn and the dual formulation (3.22) can be rewritten as

Pt,Z = min
+,−

min
µ1∈D1±

1±
√

1 + µ2
1

4

N∑
n=1

|Ṽn|2
1 + µ1λn

(3.24)

where Ṽ = QHV and the + sign corresponds to the domain D1+ while the − sign
corresponds to the domain D1−. These domains depend on the de�niteness of the
matrix X and are de�ned asD1+ = [−(maxλn)−1,−(minλn)−1], D1− = ∅, X inde�nite
D1+ = [−(maxλn)−1,∞], D1− = [−∞,−(minλn)−1] X � 0
D1+ = [−∞,−(minλn)−1], D1− = [−(maxλn)−1,∞] X � 0

(3.25)
In (3.24), the inner minimization is performed �rst for the multiplier µ1 in the
domain D1+ and D1− separately and from those two results, the minimum is selected
by the outer minimization.

3.2.4 Numerical examples

Bounds on the extinction cross section are depicted in Fig. 6 for obstacles com-
posed of gold (Au), see App. D, and circumscribed by a sphere with radius a ∈
{10, 20, 50, 100} nm. The bounds (3.14), (3.11), and (3.24) are compared with the
realized extinction cross sections of solid gold spheres and spherical gold shells where
the shell thickness is optimized to maximize the extinction cross section σt. For all
radii it is clear that inclusion of the reactance constraint (2.21) has a large e�ect for
longer wavelengths or, more accurately, electrically small sizes (ka = 2πa/λ ≤ 1).
The e�ect diminishes as the electric size increases and is negligible for ka ≥ 1, cf.,
[13].

Starting with radius a = 10 nm, it is observed that σt,ρr ≈ σt,R. Inclusion of
the reactance constraint (2.21) reduces the bound on σt by orders of magnitude
for wavelengths λ ≥ 1 μm. The di�erences are smaller for shorter wavelengths
and minuscule for λ ≈ 0.2 μm and λ ≈ 0.5 μm. The longer wavelength 0.5 μm
corresponds to the dipole plasmonic resonance [6, 36] which occurs for a relative
permittivity with a real part close to −2 (Fröhlich condition), see Fig. 6, but the
high losses weaken this e�ect. The extinction cross section for homogeneous spheres
is also close to the σt,Z bound for λ ∈ [0.2, 0.5] μm but far from the bound for longer
wavelengths. The performance improves for spherical shells with shell thickness
optimized for maximum σt which are seen to follow the σt,Z bound for the considered
wavelengths. This is partly explained by the added degree of freedom from the shell
thickness which is used to tune the plasmonic resonance at each wavelength. The
conclusions are similar for the larger radii but σt,ρr and σt,R starts to di�er and the
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Figure 6: Bounds (3.11), (3.14), and (3.24) on the extinction cross sections for
gold obstacles con�ned in a spherical region with radii a ∈ {10, 20, 50, 100} nm.
The bounds are compared with the extinction cross section for a homogeneous gold
sphere and an optimized gold spherical shell.

di�erence is large for a ≥ 50 nm. Performance of the solid spheres and spherical
shells relative to the bounds worsen with increasing radius.

Dielectric materials (such as silicon, silica, or germanium) o�er much lower losses
than gold and could hence provide larger cross sections as suggested from the bounds
in Fig. 3. In Fig. 7, bounds (3.11) and (3.24) on the extinction cross section are
depicted for obstacles supported in a spherical region with radius a and composed
of a material with relative permittivity εr = {10 + i10−3, 10 + i10−5, 20 + i10−3, 20 +
i10−5}. Here, we observe that σt,Z follows σt,R for electrically larger ka ≥ 1 cases
but has a sharp drop around ka = 1. E�ects of the losses Im{εr} are also relatively
small for ka ≥ 1 and negligible for ka < 1.

Contour plots depicting the upper bound (3.24) on the normalized extinction
cross section for obstacles supported within a sphere with radius a ∈ [0.05, 0.2] μm
and made of gold (Au), silver (Ag), and a low loss dielectric ( εr = 11 + i10−5) are
shown in Fig. 8. The results show which combination of size a and wavelength λ
should be used to maximize σt,Z/(πa

2). For visible light σt,Z/(πa
2) is limited by

20 for Au and sizes a ∈ [50, 100] nm at the longer wavelength 750 nm and 5 for
shorter wavelengths 400 nm. Silver (Ag) can potentially have higher values with
bounds around 30 and 10 at the longer and shorter wavelengths, respectively. The
values are higher for infrared wavelengths with values above 50 for λ ≈ 4 μm and
a ≈ 0.2 μm, see also Fig. 6. Low-loss dielectric materials (here εr = 11 + i10−5) have
very di�erent upper bounds compared with the two metals. It has a negligible cross
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Figure 7: Upper bounds (3.11) and (3.24) on the extinction cross sections for
dielectric obstacles having relative permittivity Re{εr} ∈ {10, 20} and Im{εr} ∈
{10−3, 10−5} supported in a spherical region with radius a.

section for electrically small sizes ka < 1, cf., Fig. 7, as is seen for a < 50 nm and
λ > 300 nm. The upper bound on the normalized extinction cross section for visible
light exceeds 40 for an obstacle with radius 200 nm.

4 Directional scattering

Here we study bounds on scattering into a particular direction and polarization by
a scatterer illuminated by an arbitrary incident wave. More speci�cally, let the
excitation be described by vector V and let the scattering be measured by the
radiation intensity U(r̂, ê) in the direction r̂ with polarization ê, see Sec. 2.1.2. An
example of this scenario where the incident �eld is a plane wave is depicted in Fig. 9.
In a complete analogy to Sec. 3.1 and Sec. 3.2 an optimization problem is formulated
for upper bounds on radiation intensity U(r̂, ê) using the power constraints (2.20)
and (2.21). The �rst constraint would be used when only real part of material
resistivity is prescribed, while both constraints should be used to enforce both real
and imaginary components of the complex resistivity. Like absorption, scattering,
and extinction studied in Sec. 3, under either selection of constraints, the upper
bound on radiation intensity U(r̂, ê) may be interpreted in terms of an upper bound
on bistatic radar cross section [2]

σbis =
4πU(r̂, ê)

S0

, (4.1)

where the incident �eld is a plane wave with power �ux S0.
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Figure 8: Upper bounds on the extinction cross sections σt,Z/(πa
2) using (3.24)

for Au, Ag, and low-loss dielectric (εr = 11 + i10−5) obstacles circumscribed by a
sphere with radius a ∈ [0.02, 0.2] μm. Contour lines with steps 2.5 are used and
σt,Z/(πa

2) ∈ {10, 20, 30, 40} are emphasized.

4.1 Prescribed losses

In the case of resistivity ρi being free, maximization of radiation intensity is deter-
mined by the solution to a QCQP

maximize IHFFHI

subject to IHRI− Re{IHV} = 0.
(4.2)

The associated dual problem reads

UR = min
ν>ν1

ν2

8
VH(−FFH + νR)−1V, (4.3)

where ν1 = FHR−1F. Since the matrix FFH is of rank 1, an analytical solution
to (4.3) exists, i.e., the Sherman�Morrison�Woodbury identity [12] may be used
to evaluate the matrix inverse analytically and the simpli�ed scalar optimization
problem may be solved in closed form. The result of this procedure is given by

UR =
1

8

(
β +
√
αγ
)2
, (4.4)

where
α = VHGV, β = |FHGV|, γ = FHGF, and G = R−1. (4.5)

4.2 Prescribed materials

If the constraint on reactive power conservation (2.21) is added to the optimization
problem (4.2), the optimization problem maximizing directional scattering with pre-
scribed material properties becomes

maximize IHFFHI

subject to IHRI− Re{IHV} = 0

IHXI− Im{IHV} = 0

(4.6)
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Figure 9: Schematic of a directed scattering optimization problem. Currents within
the structure Ω are optimized, subject to material-related power balance constraints,
to maximize the scattered �elds in a particular polarization and direction.

with the accompanying dual problem

UZ = min
(ν,µ)∈D

ν2 + µ2

8
VH

(
−FFH + νR + µX

)−1
V, (4.7)

where D = {(ν, µ) : −FFH+νR+µX � 0}. Analogously to Sec. 3.2.3, substitution
of µ = νµ1 can be used to eliminate the Lagrange multiplier ν. This, together
with application of the Sherman�Morrison�Woodbury identity, yields the simpli�ed
optimization problem

UZ = min
µ1∈D1

1 + µ2
1

8

(
β +
√
αγ
)2
, (4.8)

where α, β, and γ are the same as in (4.5) except for the added dependence on the
Lagrange parameter µ1 via the altered form of the matrix G = (R + µ1X)−1. The
domain D1 is given by the union of domains D1+ and D1− from (3.25), i.e.,

D1 =

®
[−(maxλn)−1,−(minλn)−1] X inde�nite,

R \ [−(minλn)−1,−(maxλn)−1] X de�nite.
(4.9)

The inverse in G may be conveniently factored using the characteristic-mode-like
eigenvalue problem (3.23) such that each term in (4.5) may be calculated e�ciently
using

aHGb = aHQ (1 + µ1Λ)−1 QHb =
N∑
n=1

ã∗nb̃n
1 + µ1λn

. (4.10)

where {λn} are again the eigenvalues of the characteristic-mode-like problem in
(3.23) and the tilde denotes the projection ã = QHa.
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4.3 Numerical examples

As a simple example, consider the directive scattering bounds for the rectangular
prism (slab) in Fig. 9. The object's aspect ratio x : y : z is 10 : 5 : 1. Illumination
is a ŷ-polarized plane wave incident from the ẑ direction. Observation directions
are restricted to the xz plane and described by the angle θ. Two observation po-
larizations are selected: parallel (‖, electric �eld ŷ-directed) and perpendicular (⊥,
electric �eld in the xz plane).

First, we calculate the bounds for directive scattering with prescribed losses for
slabs of three electrical sizes ka = {0.01, 0.1, 1} and two real resistivities ρr/a =
{0.01, 1} Ω with only the real power constraint enforced. Results in Fig. 10, pre-
sented in terms of bistatic radar cross sections, show similar trends as observed for
scattering cross sections in Fig. 3, with non-monotonic shifting of the overall max-
imal scattering response over all observation angles as a function of electrical size.
We observe that both end�re (θ = π/2) and broadside (θ = 0, 2π) may serve as
the direction with highest scattering potential, though for small electrical sizes the
angular variation in maximal scattering disappears as the optimal current becomes
a uniform dipole moment.

Using (4.8), we calculate the directive scattering bounds for the same slab with
prescribed material properties corresponding to gold. Absolute units are required
in this case, so the thickness of the slab is set at 40 nm and three wavelengths
λ = {470, 550, 665} nm within the optical regime are examined. The di�erence in
wavelength in this case is small, nonetheless the dispersive properties of gold lead
to interesting variation in the maximal scattering properties, shown in Fig. 11. We
observe that over this range, the parallel polarization (‖) transitions from a maxi-
mum in the end�re direction (θ = 0, λ = 665 nm) to a maximum in the broadside
direction (θ = π/2, λ = 470 nm). Additionally, in the parallel polarization the e�ect
of the loss versus material constraints is minimal, as also observed in the trends for
extinction cross section on large spherical scatterers in this range of frequencies, cf.,
Fig. 6. This is not the case, however, for the perpendicular polarization, where the
inclusion of the reactance constraint impedes end�re scattering at all three wave-
lengths.

5 Purcell's factor

Upper bounds on enhancement of radiation from a point electric dipole (Purcell's
factor, see Sec. 2.1.3) are studied in this section for the case of prescribed losses and
for the case of prescribed materials.

5.1 Prescribed losses

Assuming a �xed excitation vector V which is the projection (2.17) of the electric
�eld generated by the dipole p in free space onto the current basis (2.3), a maximum
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Figure 10: Upper bounds on directed scattering, plotted in terms of normalized
bistatic radar cross section σbis/(πa

2), for the scattering geometry in Fig. 9 with
prescribed losses.
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Figure 11: Directed scattering bounds for parallel (top) and perpendicular (bottom)
polarizations for a gold slab at three optical wavelengths.
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Purcell's factor (2.16) with prescribed material losses is generated by

maximize − IHRρI + Re{IHN}
subject to IHRI− Re{IHV} = 0

(5.1)

with the corresponding dual problem

FR = min
ν>ν1

1 +
1

8Pr,p

(N + νV)H
(
Rρ + νR

)−1
(N + νV) , (5.2)

where ν1 = −1/(1+%1) with %1 being the largest radiation mode eigenvalue generated
by (3.4).

Employing diagonalization of the underlying matrices, the dual problem can be,
similarly to Sec. 3.1.1, written as

FR = min
ν>ν1

1 +
1

8Pr,p

∑
n

∣∣Ñn + νṼn
∣∣2

1 + ν (1 + %n)
. (5.3)

A sweep of the upper bound to Purcell's factor FR over frequency is shown in
Fig. 12 for a gold spherical dimer together with the realized Purcell's factor F for the
same structure. A spherical geometry is used as a prototype of a core-shell particle
which is commonly used for the metal-enhanced �uorescence [11, 35]. In these cases,
either the core or the shell are made of a plasmonic material (e.g., gold). Within the
optimization paradigm used here, the contrast current chooses the preferred option.

Comparison of both lines in Fig. 12 shows that in the real scenario, the dimer
structure is e�ectively excited only in the vicinity of plasmonic resonance of the
dimer and even there the realized Purcell's factor is one order in magnitude lower
than upper bound FR. Away from the plasmonic resonance a simple spherical dimer
is far from acting as an optimal structure for radiation enhancement, as evidenced
by a considerable gap between the realized Purcell's factor and its upper bound.

5.2 Prescribed material

The addition of a reactive power constraint to (5.1) results in a maximal Purcell's
factor under prescribed material given by the optimization problem

maximize − IHRρI + Re{IHN}
subject to IHRI− Re{IHV} = 0

IHXI− Im{IHV} = 0

(5.4)

and dual problem

FZ = min
(ν,µ)∈D

1 +
1

8Pr,p

(
N + (ν − iµ)V

)H(
Rρ + νR + µX

)−1(
N + (ν − iµ)V

)
, (5.5)

where D = {(ν, µ) : Rρ+νR+µX � 0}. The solution to this optimization problem
must be performed by general purpose solvers, see App. B.
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Figure 12: Frequency dependence of Purcell's factor (2.16) and its upper
bounds (5.3), (5.5) for a spherical dimer with sphere radius r = 30 nm, separa-
tion distance between the spheres d = 0.4r and an electric dipole moment centered
between the spheres and oriented along the axis of the dimer. Gold has been used
for the dimer, see App. D.

The frequency dependence of the upper bound FZ is depicted in Fig. 12. As com-
pared to upper bound FR, the additional constraint on the conservation of reactive
power considerably tightens the bound at long wavelengths (small electrical sizes),
pushing it closer to the realized Purcell's factor F . The noticeable gap between
the realized Purcell's factor and its bound nevertheless still exists away from the
plasmonic resonance. Thus, away from plasmonic resonance the realized structure
would have to be modi�ed in topology in order to achieve resonance coupling to the
exciting dipole.

6 Conclusions

In this paper we have laid out a general optimization framework for determining
bounds on several metrics related to electromagnetic scattering, absorption, and
�eld enhancement. In all cases, bounds were formulated using contrast current
density representing the optimization domain and matrix operators mapping current
distributions onto physical quantities. Techniques such as modal decomposition
and rank-1 inverse updates were applied to simplify each problem based on its
distinguishing features. Through that process, many of the problems studied here
may be solved in computationally e�cient ways.

The framework discussed here is not limited to the problems studied in this
paper. Further bounds on both near- and far-�eld metrics may be derived given
the ability to calculate the necessary matrix operators. Though in this paper all
scattering objects were considered to exist in vacuum, no substantial modi�cation
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is necessary for the case of objects suspended within any other lossless dielectric
background. Similarly, material inhomogeneity and anisotropy may be introduced
with minimal technical changes.

The bounds presented in this paper represent the absolute optimal behavior
achievable by objects of prescribed material and bounding support. In addition to
providing insight into the fundamental physical limitations of speci�c electromag-
netic processes, these bounds will serve as benchmarks for future topology optimiza-
tion implementations. There, the associated optimal current solutions may also �nd
utility in accelerating and informing the chosen topology optimization algorithm.
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A Power balance constraint

A scattering problem is typically formulated using an impressed source J i which ex-
cites an incident electromagnetic �eld Ei,H i interacting with a scatterer, generating
scattered �eld Es,Hs. The total electromagnetic �eld is de�ned as E = Ei + Es

and H = H i +Hs.
A complex power balance in this scenario is typically formulated as [24]

−
∫
V

E · J∗i dV =

∮
∂V

(E ×H∗) · dS − iω

∫
V

Ä
µ0 |H|2 − ε0 |E|2

ä
dV +

∫
V

1

ρ∗
|E|2 dV,

(A.1)
see Fig. 1 for de�nition of the region V and its boundary ∂V .

Using a volume equivalence principle [3], the same scattering problem can be
modeled by a contrast current density J which replaces the scatterer and is the
source of scattered �elds. In this point of view, the complex power balance is more
naturally stated as

−
∫
V

E · (J + J i)
∗ dV =

∮
∂V

(E ×H∗) · dS − iω

∫
V

Ä
µ0 |H|2 − ε0 |E|2

ä
dV, (A.2)

where sources J + J i radiate in free space.
Comparing (A.1) and (A.2) identi�es the term∫

V

E · J∗dV =

∫
V

1

ρ∗
|E|2 dV =

∫
V

ρ |J |2 dV ≈ IH (Rρ − iXρ) I (A.3)

with a complex power �ow within the material of the scatterer. The last equality
results from a current expansion (2.3) and de�nitions introduced in Sec. 2.3 and
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de�nes the matrix

(Rρ − iXρ)ij =

∫
V

ψ∗i · ρψj dV. (A.4)

Within the volume equivalence, the scattered �eld is itself a valid solution to
Maxwell's equations in free space and therefore generates a complex power balance
relation

−
∫
V

Es · J∗ dV =

∮
∂V

(Es ×H∗s ) · dS − iω

∫
V

Ä
µ0 |Hs|2 − ε0 |Es|2

ä
dV, (A.5)

where

−
∫
V

Es · J∗ dV ≈ IH (R0 − iX0) I (A.6)

de�nes matrix R0 − iX0 introduced in Sec. 2.2 as a projection of scattered �eld
operator

Es (J) = ikη0

∫
V

(
1 + k−2∇∇

)
· J (r′)

eik|r−r
′|

4π|r − r′| dV, (A.7)

onto a current basis (2.3)

(R0 − iX0)ij =

∫
V

ψ∗i ·Es(ψj) dV, (A.8)

see [20] for more details.
Addition of (A.3) and (A.6) together with de�nition (2.17) generates the complex

power constraint (2.19).

B Quadratically constrained quadratic programs

Assume an optimization problem of the form

maximize IHAI + Re
{
IHa
}

+ a0

subject to IHBI + Re
{
IHb

}
+ b0 = 0

IHCI + Re
{
IHc
}

+ c0 = 0

(B.1)

where A = AH,B = BH,C = CH ∈ C[N×N ], a0, b0, c0 ∈ R and a,b, c, I ∈ C[N×1].
The dual function [7, 45] for this problem is

g (ν, µ) = −1

4
(a− νb− µc)HH−1(a− νb− µc) + a0 − νb0 − µc0, (B.2)

where the Hessian matrix of the Lagrangian (strictly speaking, twice the Hessian
matrix)

H = A− νB− µC (B.3)
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is assumed to be negative de�nite, i.e., H ≺ 0, and where ν, µ ∈ R are Lagrange
multipliers. The stationary point of the Lagrangian is found at

Iopt = −1

2
H−1(a− νb− µc). (B.4)

The dual solution to the problem (B.1) is realized by minimizing the convex
dual function g (ν, µ). Since the primal optimization problem (B.1) is generally not
convex [7], the solution to a dual problem in general only gives an upper bound to
the primal problem. However, the case with a single quadratic constraint (C = 0)
in (B.1) is solved by the dual formulation if the solution is feasible [7]. Strong duality
also holds for two quadratic constrains under mild conditions on B and C [4]. In
all cases treated in this paper, there seems to be (inductive observation based on
many numerical trials) no dual gap [7] and the solution to the dual problem equals
the solution to the primal problem.

The minimization of (B.2) must typically be done via general purpose convex
optimization tools. Due to its simplicity and fast convergence, Newton's method
is often the �rst choice [43]. Another justi�cation for the use of Newton's method
is the existence of simple formulas for the �rst and the second derivatives of the
dual function g (ν, µ) with respect to the Lagrange multipliers. These derivatives
are given by

∂g (ν, µ)

∂ν
= −Re

¶
(BIopt + b)H Iopt

©
− b0 (B.5)

∂g (ν, µ)

∂µ
= −Re

¶
(CIopt + c)H Iopt

©
− c0 (B.6)

∂2g (ν, µ)

∂ν2
= −2

Å
BIopt +

b

2

ãH
H−1
Å

BIopt +
b

2

ã
(B.7)

∂2g (ν, µ)

∂µ2
= −2

(
CIopt +

c

2

)H
H−1

(
CIopt +

c

2

)
(B.8)

∂2g (ν, µ)

∂ν∂µ
= −2 Re

®Å
BIopt +

b

2

ãH
H−1

(
CIopt +

c

2

)´
(B.9)

B.1 Single quadratic constraint

If C, c, c0 = 0 in the optimization problem (B.1), considerable simpli�cations may be
made. For example, assume that a matrix Q exists that simultaneously diagonalizes
the matrices A,B. The optimization problem (B.1) can then be recast into an
alternative (�Q�) basis as

maximize ĨHÃĨ + Re
{
ĨHã
}

+ a0

subject to ĨHB̃Ĩ + Re
{
ĨHb̃

}
+ b0 = 0

(B.10)

where I = QĨ, ã = QHa, b̃ = QHb and where the matrices Ã = QHAQ, B̃ = QHBQ
are real and diagonal. This leads to an analytical inversion of the Hessian matrix

H̃−1nn =
(
Ãnn − νB̃nn

)−1
, (B.11)



30

which in many cases allows for an analytical solution to the problem (B.10) that is
given by the root of (B.5).

For two important cases considered in this paper, an analytical solution to (B.10)
can be found. The �rst case occurs when A = 0 and the matrix B is of full rank and
not inde�nite. The Q-basis is in that case formed by an eigenvalue decomposition
BQ = QD and the Lagrange multiplier which minimizes the dual function is given
by

ν2opt =

∑
n |ãn|

2 B̃−1nn∑
n

Ä∣∣b̃n∣∣2B̃−1nnä− 4b0
(B.12)

under the condition that ν2opt > 0. The positive root of (B.12) is chosen when B̃nn >

0, while the negative root of (B.12) is chosen when B̃nn < 0.
The second case is realized when the matrix A = αLH

1 L1 is a rank-1 Hermitian
matrix, the matrix B = βLH

2 L2 is Hermitian and of full rank, the vector a = 0
and b0 = 0. The Q-basis is most easily obtained via Q = L−12 U1, where U1 is a
unitary matrix coming from the singular value decomposition L−H2 LH

1 = U1ΣUH
2 .

Since the matrix A is rank-1, only one element of the diagonal matrix Ã is non-zero.
Denoting its index as i = 1, the solution to this special case reads

νopt =
Ã11

B̃11

Ñ
1±

(
B̃11∣∣b̃1∣∣2

∑
n

∣∣b̃n∣∣2
B̃nn

)− 1
2

é
, (B.13)

where the correct sign in (B.13) is chosen according to the negative de�niteness of
the Hessian matrix (B.3).

C Radiation modes

Radiation modes are determined from the eigenvalue problem (3.4). Although ra-
diation modes are easily determined numerically for arbitrary shapes using the S
matrix [55], analytic expressions are valuable. The radiation modes for a solid sphere
with homogeneous resistivity ρr can be determined analytically

%n =
k2η0
ρr

∫ a

0

|u(1)
υ (kr)|2 dV =

k2η0a
3

2ρr

Å
(R

(1)
1,l )

2 − R
(1)
1,l−1 R

(1)
1,l+1 +

2

ka
R

(1)
1,l R

(1)
2,l δτ,2

ã
≈ (ka)2l(

(2l + 1)!!
)2 η0aρr

®
(ka)2/(2l) τ = 1

(l + 1) τ = 2
as ka→ 0, (C.1)

where u(1)
υ denote regular spherical waves [18, 31], R

(1)
τ,l = R

(1)
τ,l (ka) radial func-

tions [18, 55], and υ = (τ, s,m, l) a multi-index with s, l ∈ {1, 2}, m ∈ {0, . . . , l},
and l ∈ {1, . . . } ordered as n = 2(l2 + l − 1 + (−1)sm+ τ . Amplitudes of radiation
modes for a homogeneous sphere with radius a are depicted in Fig. 13. The radiation
modes are dominated by the three transverse magnetic (TM) (τ = 2) dipole modes
(l = 1) for electrically small spheres followed by the three transverse electric (TE)
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Figure 13: Normalized radiation modes, %n, for a homogeneous spherical region
with radius a, resistivity ρr, and free-space wavenumber k. Modes are ordered as
n = 2(l2 + l − 1 + (−1)sm + τ , with orders l = {1, 2, . . .} and TE (τ = 1) and TM
(τ = 2) in solid and dashed curves, respectively.

(τ = 1) dipole and �ve TM quadrupole (l = 2) modes. They increase monotonically
with the electrical size ka. The sum of radiation modes for a homogeneous object
with volume V and resistivity ρr are determined from the trace of matrix R0 to∑
%n = k2η0V/(2πρr).
Radiation modes can also be determined analytically in the limit of electrically

small objects. In this limit, electric dipoles (τ = 2 and l = 1) dominate radiation
and the Rayleigh quotient related to the eigenvalue problem (3.4) simpli�es to

IHR0I

IHRρI
=
|SI|2

IHRρI
≈
k2η0

∑
υ

∣∣∣ ∫ u(1)
υ ·J dV

∣∣∣2∫
ρr|J |2 dV

≈
k2η0

∑
υ

∣∣∣ ∫ ê · J dV
∣∣∣2

6π

∫
ρr|J |2 dV

, (C.2)

where we used the low-frequency expansion of the regular spherical waves u(1)
υ ≈

ê/
√

6π for electric dipoles in the ê ∈ {x̂, ŷ, ẑ}-directions.
For inhomogeneous objects with resistivity ρr(r), we use variational calculus and

set J = J0 + δJ1 and evaluate for small perturbations δJ1 with δ → 0 giving∣∣∣ ∫ (ê · J0 + δê · J1) dV
∣∣∣2∫

ρr(|J0|2 + 2δJ1 · J0 + δ2|J1|2) dV
≈

∣∣∣ ∫ ê · J0 dV
∣∣∣2 + 2δ

∫
ê · J1 dV

∫
ê · J0 dV∫

ρr|J0|2 dV + 2δ

∫
ρrJ1 · J0 dV

.

(C.3)

The functional is stationary for all perturbations J1 if∫
Ω

ê · J1 dV = 0 and

∫
Ω

ρrJ1 · J0 dV = 0 (C.4)
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Figure 14: Radiation modes %n for spheroids with semi-axes az and ar for ka = 1
with a = max{az, ar} and resistivity ρr normalized with η0/(ρrk).

for all J1 which imply a current density J0 ∼ ê/ρr. Within this approximation, the
�rst three dominant radiation modes have eigenvalues

%n =
k2η0
6π

∫
Ω

1

ρr(r)
dV =

k2η0V

6πρr
for n = 1, 2, 3 (C.5)

for ka� 1 and the last equality is for homogeneous objects with volume V .
Radiation modes for a spherical and oblate and prolate spheroidal regions with

semi-axes ar and az are depicted in Fig. 14. The �rst three modes radiates as electric
dipoles and have eigenvalues approximately given by the volume V = 4πa2raz/3.
This explains the decrease of the �rst modes compared to the sphere and ordering
of the curves. Eigenvalues for the sphere appear in groups with 2l + 1 elements,
where l denote the order of the spherical mode, see also (C.1) and Fig. 13. The
eigenvalues decrease rapidly with the mode index such that higher order become
negligible for l � ka with n = 2l(l + 2) and the order, l, can often be estimated
from l = dka+ 7 3

√
ka+ 3e [54].

Radiation modes together with an expansion of the incident plane wave in spher-
ical waves [31]

aυ = 4πil−τ+1ê ·Yυ(k̂), (C.6)

are used in (3.5), (3.8), and (3.11) to express the bounds on the cross sections in
a form that is suitable for small size approximations. Here, Yυ denotes spherical
harmonics [31] and the explicit value |ê ·Yυ|2 = 3/(8π) for the dipole terms (l = 1)

|a1|2 = 16π2
3

8π
= 6π (C.7)

is used in (3.12), (3.13), and (3.14).
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D Material models

A MATLAB implementation [57] of a Drude-Lorentz model of gold and silver [48]
is used for the permittivity ε and resistivity ρ throughout the paper. The frequency
dependence of both parameters in the interval λ ∈ [0.2, 12] μm is depicted in Fig. 15
and Fig. 16. This permittivity model also agrees well with older reference data
for gold from [27]. Bulk material parameters are assumed throughout the paper.
Surface e�ects resulting in a non-local material response are neglected.
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Figure 15: Frequency dependent permittivity of gold and silver. The inset shows a
linear scale plot of the region with negative material parameters.
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Figure 16: Frequency dependent resistivity of gold and silver. The inset shows a
linear scale plot of the region with negative material parameters.
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