15 research outputs found
A simple circuit realization of the tent map
We present a very simple electronic implementation of the tent map, one of
the best-known discrete dynamical systems. This is achieved by using integrated
circuits and passive elements only. The experimental behavior of the tent map
electronic circuit is compared with its numerical simulation counterpart. We
find that the electronic circuit presents fixed points, periodicity, period
doubling, chaos and intermittency that match with high accuracy the
corresponding theoretical valuesComment: 6 pages, 6 figures, 10 references, published versio
Generation of a Reconfigurable Logical Cell Using Evolutionary Computation
Adaptation in nature is a relevant research area that has
many applications in artificial systems, which can be used for
the benefit of society. Particularly in biology, a neuron can
reconfigure itself to develop different tasks using the same
structure; however, this procedure is a mystery. The processes
of adaptation, learning, and coupling between them have
been research pursuits therein, and the understanding of this
processes can help to build artificial devices.The act of joining
living tissue with electronics has long been imagined in the
world of science fiction, but cybernetic organisms are now
one step closer to reality, thanks to work emerging from
researchers that have built tiny electronic meshes out of silicon nanowires and have used them as scaffolds to grow nerve,
heart, and muscle tissu
Electronic circuit implementation of chaos synchronization
In this paper, an electronic circuit implementation of a robustly chaotic
two-dimensional map is presented. Two such electronic circuits are realized.
One of the circuits is configured as the driver and the other circuit is
configured as the driven system. Synchronization of chaos between the driver
and the driven system is demonstrated
Epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole for six Candida species as determined by the colorimetric Sensititre YeastOne method
In the absence of clinical breakpoints (CBP), epidemiological cutoff values (ECVs) are useful to separate wild-type (WT) isolates (without mechanisms of resistance) from non-WT isolates (those that can harbor some resistance mechanisms), which is the goal of susceptibility tests. Sensititre YeastOne (SYO) is a widely used method to determine susceptibility of Candida spp. to antifungal agents. The CLSI CBP have been established, but not for the SYO method. The ECVs for four azoles, obtained using MIC distributions determined by the SYO method, were calculated via five methods (three statistical methods and based on the MIC50 and modal MIC). Respectively, the median ECVs (in mg/liter) of the five methods for fluconazole, itraconazole, posaconazole, and voriconazole (in parentheses: the percentage of isolates inhibited by MICs equal to or less than the ECVs; the number of isolates tested) were as follows: 2 (94.4%; 944), 0.5 (96.7%; 942), 0.25 (97.6%; 673), and 0.06 (96.7%; 849) for Candida albicans; 4 (86.1%; 642), 0.5 (99.4%; 642), 0.12 (93.9%; 392), and 0.06 (86.9%; 559) for C. parapsilosis; 8 (94.9%; 175), 1 (93.7%; 175), 2 (93.6%; 125), and 0.25 (90.4%; 167) for C. tropicalis; 128 (98.6%; 212), 4 (95.8%; 212), 4 (96.0%; 173), and 2 (98.5; 205) for C. glabrata; 256 (100%; 53), 1 (98.1%; 53), 1 (100%; 33), and 1 (97.9%; 48) for C. krusei; 4 (89.2%; 93), 0.5 (100%; 93), 0.25 (100%; 33), and 0.06 (87.7%; 73) for C. orthopsilosis. All methods included =94% of isolates and yielded similar ECVs (within 1 dilution). These ECVs would be suitable for monitoring emergence of isolates with reduced susceptibility by using the SYO method
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
Chuaʼs circuit and its characterization as a filter
"This article deals with Chuaʼs circuit characterization from the point of view of a filter based on the concept of piecewise linear functions. Furthermore, experiments are developed for teaching electronic systems that can be used for novel filtering concepts. The frequency range in which they are tested is from to , due to the audio spectrum comprised in this frequency range. The node associated with the capacitor and Chuaʼs diode is used as input, and the node for another capacitor and the coil is used as output, thereby establishing one input–output relationship for each system case given by the piecewise linear functions. The experimental result shows that Chuaʼs circuit behaves as a bandpass filter-amplifier, with a maximum frequency around and bandwidth between and . The results presented in this paper can motivate engineering students to pursue applications of novel electrical circuits based on topics that are of potential interest in their future research studies.