1,345 research outputs found

    Second Order Phase Transitions : From Infinite to Finite Systems

    Full text link
    We investigate the Equation of State (EOS) of classical systems having 300 and 512 particles confined in a box with periodic boundary conditions. We show that such a system, independently on the number of particles investigated, has a critical density of about 1/3 the ground state density and a critical temperature of about 2.5 MeV2.5~ MeV. The mass distribution at the critical point exhibits a power law with τ=2.23\tau = 2.23. Making use of the grand partition function of Fisher's droplet model, we obtain an analytical EOS around the critical point in good agreement with the one extracted from the numerical simulations.Comment: RevTex file, 17 pages + 9 figures available upon request from [email protected]

    Scenario-based Economic Dispatch with Uncertain Demand Response

    Full text link
    This paper introduces a new computational framework to account for uncertainties in day-ahead electricity market clearing process in the presence of demand response providers. A central challenge when dealing with many demand response providers is the uncertainty of its realization. In this paper, a new economic dispatch framework that is based on the recent theoretical development of the scenario approach is introduced. By removing samples from a finite uncertainty set, this approach improves dispatch performance while guaranteeing a quantifiable risk level with respect to the probability of violating the constraints. The theoretical bound on the level of risk is shown to be a function of the number of scenarios removed. This is appealing to the system operator for the following reasons: (1) the improvement of performance comes at the cost of a quantifiable level of violation probability in the constraints; (2) the violation upper bound does not depend on the probability distribution assumption of the uncertainty in demand response. Numerical simulations on (1) 3-bus and (2) IEEE 14-bus system (3) IEEE 118-bus system suggest that this approach could be a promising alternative in future electricity markets with multiple demand response providers

    Innovative Soil Management and Micro-Climate Modulation for Saving Water in Peach Orchards

    Get PDF
    Microclimatic and soil management studies emphasize that roofing above the canopy or soil mulching contributes to reduce water losses from horticultural cropping systems and, at the same time, to increase water use efficiency. The aim of this 2-year on-farm study, carried out on a late ripening peach (cv. California) orchard, was to investigate the combined effect of water supply (full or deficit irrigation, DI), incoming light (hail or shading net), and soil management (tilling or mulching) on: microclimate; fruit growth; yield; irrigation water use productivity (WPI); and soil water stress coefficient (Ks). Shading hail net reduced air temperature (−1°C), wind speed (−57%), solar radiation (−32%), while increased relative air humidity (+9.5%). Compared to the control treatment (hail net coverage, soil tillage, and full irrigation), the innovative management (DI + shading hail net + mulching) reduced seasonal volumes of irrigation water (−25%) and increased both final yield (+36%) and WPI (+53%). Saving water resources without losing yield is an achievable goal by peach orchards growing under the Mediterranean climate if the DI agro-technique is adopted conjointly with shading hail net and soil mulching

    Developing the Technique of Measurements of Magnetic Field in the CMS Steel Yoke Elements With Flux-Loops and Hall Probes

    Full text link
    Compact muon solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN large hadron collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in theCMSdetector, including the large ferromagnetic parts of the yoke, is required. To measure the field in and around ferromagnetic parts, a set of flux-loops and Hall probe sensors will be installed on several of the steel pieces. Fast discharges of the solenoid during system commissioning tests will be used to induce voltages in the flux-loops that can be integrated to measure the flux in the steel at full excitation of the solenoid. The Hall sensors will give supplementary information on the axial magnetic field and permit estimation of the remanent field in the steel after the fast discharge. An experimental R&D program has been undertaken, using a test flux-loop, two Hall sensors, and sample disks made from the same construction steel used for the CMS magnet yoke. A sample disc, assembled with the test flux-loop and the Hall sensors, was inserted between the pole tips of a dipole electromagnet equipped with a computer-controlled power supply to measure the excitation of the steel from full saturation to zero field. The results of the measurements are presented and discussed.Comment: 6 pages, 8 figures, 6 reference

    Orchard floor management affects tree functionality, productivity and water consumption of a late ripening peach orchard under semi-arid conditions

    Get PDF
    Semi-arid conditions are favorable for the cultivation of late ripening peach cultivars; however, seasonal water scarcity and reduction in soil biological fertility, heightened by improper soil management, are jeopardizing this important sector. In the present two-year study, four soil managements were compared on a late ripening peach orchard: (i) completely tilled (control); (ii) mulched with reusable reflective plastic film; (iii) mulching with a Leguminosae cover-crop flattened after peach fruit set; (iv) completely tilled, supplying the water volumes of the plastic mulched treatment, supposed to be lower than the control. Comparison was performed for soil features, water use, tree functionality, fruit growth, fruit quality, yield and water productivity. Even receiving about 50% of the regular irrigation, reusable reflective mulching reduced water loss and soil carbon over mineralization, not affecting (sometimes increasing) net carbon assimilation, yield, and fruit size and increasing water productivity. The flattening technique should be refined in the last part of the season as in hot and dry areas with clay soils and low organic matter, soil cracking increased water evaporation predisposing the orchard at water stress. The development and implementation of appropriate soil management strategies could be pivotal for making peach production economically and environmentally sustainable

    Lattice Simulation of Nuclear Multifragmentation

    Full text link
    Motivated by the decade-long debate over the issue of criticality supposedly observed in nuclear multifragmentation, we propose a dynamical lattice model to simulate the phenomenon. Its Ising Hamiltonian mimics a short range attractive interaction which competes with a thermal-like dissipative process. The results here presented, generated through an event-by-event analysis, are in agreement with both experiment and those produced by a percolative (non-dynamical) model.Comment: 8 pages, 3 figure

    Calculation of the number of partitions with constraints on the fragment size

    Get PDF
    This article introduces recursive relations allowing the calculation of the number of partitions with constraints on the minimum and/or on the maximum fragment size

    Information entropy in fragmenting systems

    Get PDF
    The possibility of facing critical phenomena in nuclear fragmentation is a topic of great interest. Different observables have been proposed to identify such a behavior, in particular, some related to the use of information entropy as a possible signal of critical behavior. In this work we critically examine some of the most widespread used ones comparing its performance in bond percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure

    Order parameter fluctuations and thermodynamic phase transitions in finite spin systems and fragmenting nuclei

    Get PDF
    We show that in small and low density systems described by a lattice gas model with fixed number of particles the location of a thermodynamic phase transition can be detected by means of the distribution of the fluctuations related to an order parameter which is chosen to be the size of the largest fragment. We show the correlation between the size of the system and the observed order of the transition. We discuss the implications of this correlation on the analysis of experimental fragmentation data.Comment: 9 pages including 5 figures. Final version to appear in PL
    • 

    corecore