13 research outputs found
PVP solid dispersions containing Poloxamer 407 or TPGS for the improvement of ursolic acid release
Solid dispersions (SDs) of ursolic acid (UA) were developed using polyvinylpyrrolidone K30 (PVP K30) in combination with non-ionic surfactants, such as D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) or poloxamer 407 (P407) with the aim of enhancing solubility and in vitro release of the UA. SDs were investigated using a 24 full factorial design, subsequently the selected formulations were characterized for water solubility, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), particle diameter, scanning electron microscopy, drug content, physical-chemical stability and in vitro release profile. SDs showed higher UA water-solubility than physical mixtures (PMs), which was attributed by transition of the drug from crystalline to amorphous or molecular state in the SDs, as indicated by XRD and DSC analyses. SD1 (with P407) and SD2 (with TPGS) were chosen for further investigation because they had higher drug load. SD1 proved to be more stable than SD2, revealing that P407 contributed to ensure the stability of the UA. Furthermore, SD1 and SD2 increased UA release by diffusion and swelling-controlled transport, following the Weibull model. Thus, solid dispersions obtained with PVP k-30 and P407 proved to be advantageous to enhance aqueous solubility and stability of UA
Amyloid Fibrils Enhance the Topical Bio-Adhesivity of Liquid Crystalline Mesophase-Based Drug Formulations
Despite their distinctive secondary structure based on cross beta-strands, amyloid fibrils (AF) are stable fibrous protein aggregates with features similar to collagen, one of the main components of the extracellular matrix, and thus constitute a potential scaffold for enhancing cell adhesion for topical applications. Here, the contribution of AF to skin bio-adhesivity aiming toward topical treatments is investigated. Liquid crystalline mesophase (LCM) based on phytantriol is formulated, with the aqueous phase containing either water or a solution of 4 wt% amyloid fibrils. Then resveratrol is added as a model anti-inflammatory molecule. The developed LCM presents a double gyroid Ia3d mesophase. The incorporation of AF into the LCM increases its bio-adhesive properties. In vitro release and ex vivo permeation and retention confirm the controlled release property of the system, and that resveratrol is retained in epidermis and dermis, but is also permeated through the skin. All formulations are biocompatible with L929 cells. The in vivo assay confirms that systems with AF lead to a higher anti-inflammatory effect of resveratrol. These results confirm the hypothesis that the incorporation of AF in the LCM increases the bio-adhesiveness and efficiency of the system for topical treatment, and consequently, the therapeutical action of the encapsulated drug.ISSN:2192-2640ISSN:2192-265
Development of a Mucoadhesive Liquid Crystal System for the Administration of Rifampicin Applicable in Tuberculosis Therapy
Since 1966, rifampicin (RIF) has been considered one of the most potent drugs in the treatment of tuberculosis (TB), which is caused by infection with M. tuberculosis (Mtb). New nanostructured formulations for RIF delivery and alternative routes of administration have been studied as potential forms of treatment. This study evaluates a liquid crystal system for RIF delivery, using alternative drug delivery routes. The systems developed are composed of surfactant, oleylamine, and soy phosphatidylcholine. With the aid of polarized light microscopy, it was possible to determine that the developed systems had a hexagonal mesophase. All systems developed showed non-Newtonian pseudoplasticity and a high degree of thixotropy. Liquid crystal systems with RIF showed an increase in elastic potential, indicating greater mu-coadhesiveness. The evaluation of mucoadhesive forces revealed an increase in the mucoadhesive potential in the presence of mucus, indicating the presence of satisfactory mucoadhesive forces. The 9DR and 10DR liquid crystal systems, when submitted to Differential Scanning Calorimetry analysis, remained structured even at temperatures above 100 °C, showing excellent stability. The developed liquid crystal systems showed a tolerable degree of cytotoxicity and bactericidal potential, for example, the 9DR system demonstrated a reduction in bacterial load after the third day and reached zero CFU on the seventh day of the test. The developed systems were also evaluated in the preclinical model of Mtb-infected mice, using the nasal, sublingual, and cutaneous route for the delivery of RIF associated with a nanostructured liquid crystal system as a possible tool in the treatment of TB
Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays
Oxidative stress, which is a result of overproduction and accumulation of free radicals, is the main cause of several skin degenerative diseases, such as aging. Polyphenols, such as gallic acid, are an important class of naturally occurring antioxidants. They have emerged as strong antioxidants that can be used as active cosmetics. The purpose of this study was to develop a gallic acid-loaded cosmetic gel formulation and characterize it using rheological, mechanical, and bioadhesive tests. Its antioxidant effect in the stratum corneum was evaluated by a non-invasive method. According to the characterization tests, the formulation exhibited skin adhesiveness and pseudoplastic behavior without thixotropy, rendering it suitable for use as a cosmetic formulation. Furthermore, the non-invasive method indicated the antioxidant effect in the stratum corneum, with the global lipid peroxide reduction being 33.97 ± 11.66%. Thus, we were able to develop a promising gallic acid-loaded gel formulation that could reduce lipid peroxides and thus combat skin oxidative stress
Gallic acid-loaded gel formulation combats skin oxidative stress: development, characterization and ex vivo biological assays
Oxidative stress, which is a result of overproduction and accumulation of free radicals, is the main cause of several skin degenerative diseases, such as aging. Polyphenols, such as gallic acid, are an important class of naturally occurring antioxidants. They have emerged as strong antioxidants that can be used as active cosmetics. The purpose of this study was to develop a gallic acid-loaded cosmetic gel formulation and characterize it using rheological, mechanical, and bioadhesive tests. Its antioxidant effect in the stratum corneum was evaluated by a non-invasive method. According to the characterization tests, the formulation exhibited skin adhesiveness and pseudoplastic behavior without thixotropy, rendering it suitable for use as a cosmetic formulation. Furthermore, the non-invasive method indicated the antioxidant effect in the stratum corneum, with the global lipid peroxide reduction being 33.97 ± 11.66%. Thus, we were able to develop a promising gallic acid-loaded gel formulation that could reduce lipid peroxides and thus combat skin oxidative stress99CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informação2011/04908-1; 2013/01565-1; 2013/01118-5; 2014/24180-0; 2017/17597-
Structural Features and the Anti-Inflammatory Effect of Green Tea Extract-Loaded Liquid Crystalline Systems Intended for Skin Delivery
Camellia sinensis, which is obtained from green tea extract (GTE), has been widely used in therapy owing to the antioxidant, chemoprotective, and anti-inflammatory activities of its chemical components. However, GTE is an unstable compound, and may undergo reactions that lead to a reduction or loss of its effectiveness and even its degradation. Hence, an attractive approach to overcome this problem to protect the GTE is its incorporation into liquid crystalline systems (LCS) that are drug delivery nanostructured systems with different rheological properties, since LCS have both fluid liquid and crystalline solid properties. Therefore, the aim of this study was to develop and characterize GTE-loaded LCS composed of polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, avocado oil, and water (F25E, F29E, and F32E) with different rheological properties and to determine their anti-inflammatory efficacy. Polarized light microscopy revealed that the formulations F25, F29, and F32 showed hexagonal, cubic, and lamellar liquid crystalline mesophases, respectively. Rheological studies showed that F32 is a viscous Newtonian liquid, while F25 and F29 are dilatant and pseudoplastic non-Newtonian fluids, respectively. All GTE-loaded LCS behaved as pseudoplastic with thixotropy; furthermore, the presence of GTE increased the S values and decreased the n values, especially in F29, indicating that this LCS has the most organized structure. Mechanical and bioadhesive properties of GTE-unloaded and -loaded LCS corroborated the rheological data, showing that F29 had the highest mechanical and bioadhesive values. Finally, in vivo inflammation assay revealed that the less elastic and consistent LCS, F25E and F32E presented statistically the same anti-inflammatory activity compared to the positive control, decreasing significantly the paw edema after 4 h; whereas, the most structured and elastic LCS, F29E, strongly limited the potential effects of GTE. Thereby, the development of drug delivery systems with suitable rheological properties may enhance GTE bioavailability, enabling its administration via the skin for the treatment of inflammation