2,438 research outputs found

    The use of multispectral sensing techniques to detect Ponderosa pine trees under stress from insect or pathogenic organisms

    Get PDF
    Multispectral sensing techniques for ground and airborne detection of Ponderosa pine trees under stress from insect or pathogenic organism

    The use of multispectral sensing techniques to detect ponderosa pine trees under stress from insect or pathogenic organisms

    Get PDF
    Application of multispectral sensors to detect insect and disease infestation of ponderosa pine tree

    Plan-view Trajectory Estimation with Dense Stereo Background Models

    Get PDF
    In a known environment, objects may be tracked in multiple views using a set of back-ground models. Stereo-based models can be illumination-invariant, but often have undefined values which inevitably lead to foreground classification errors. We derive dense stereo models for object tracking using long-term, extended dynamic-range imagery, and by detecting and interpolating uniform but unoccluded planar regions. Foreground points are detected quickly in new images using pruned disparity search. We adopt a 'late-segmentation' strategy, using an integrated plan-view density representation. Foreground points are segmented into object regions only when a trajectory is finally estimated, using a dynamic programming-based method. Object entry and exit are optimally determined and are not restricted to special spatial zones

    High Energy Physics from High Performance Computing

    Full text link
    We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.Comment: Proceedings of invited plenary talk given at SciDAC 2009, San Diego, June 14-18, 2009, on behalf of the USQCD collaboratio

    Heat stress: A major contributor to poor animal welfare associated with long-haul live export voyages

    Get PDF
    Recent investigations by the Australian Department of Agriculture, Fisheries and Forestry into high mortalities on live export voyages from Australia to the Middle East during the Northern hemisphere summer suggest that animal welfare may be compromised by heat stress. The live export industry has generated a computer model that aims to assess the risk of heat stress and to contain mortality levels on live export ships below certain arbitrary limits. Although the model must be complied with under Australian law, it is not currently available for independent scientific scrutiny, and there is concern that model and the mandated space allowances are inadequate. This review appraises the relevant literature on heat stress in sheep and cattle, including laboratory studies aimed at mimicking the ambient temperatures and humidity levels likely to be encountered on live export voyages. Animal welfare is likely to be very poor as a result of heat stress in some shipments

    Hawking radiation and thermodynamics of dynamical black holes in phantom dominated universe

    Full text link
    The thermodynamic properties of dark energy-dominated universe in the presence of a black hole are investigated in the general case of a varying equation-of-state-parameter w(a)w(a). We show that all the thermodynamics quantities are regular at the phantom divide crossing, and particularly the temperature and the entropy of the dark fluid are always positive definite. We also study the accretion process of a phantom fluid by black holes and the conditions required for the validity of the generalized second law of thermodynamics. As a results we obtain a strictly negative chemical potential and an equation-of-state parameter w<−5/3.w<-5/3.Comment: 22 pages,3 figure

    Building Brains for Bodies

    Get PDF
    We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We will build an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to "think'' by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience
    • …
    corecore