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Abstract

In a known environment, objects may be tracked in multiple views using a set of back-
ground models. Stereo-based models can be illumination-invariant, but often have un-
defined values which inevitably lead to foreground classification errors. We derive
dense stereo models for object tracking using long-term, extended dynamic-range im-
agery, and by detecting and interpolating uniform but unoccluded planar regions. Fore-
ground points are detected quickly in new images using pruned disparity search. We
adopt a “late-segmentation” strategy, using an integrated plan-view density represen-
tation. Foreground points are segmented into object regions only when a trajectory is
finally estimated, using a dynamic programming-based method. Object entry and exit
are optimally determined and are not restricted to special spatial zones.

1 Introduction

Tracking people in known environments has recently become an active area of research
in computer vision. Several person tracking systems have been developed to detect the
number of people present as well as their 3-D position over time. These systems gen-
erally use a combination of foreground/background classification, clustering of novel
points, and trajectory estimation in one or more camera views [18, 16, 10, 13, 7, 17, 5]

Many color-based approaches to background modeling have considerable difficulty
with fast illumination variation due to changing lighting and/or video projection. To
overcome this, several authors have advocated the use of background shape models
based on stereo range data [7, 5, 11]. Unfortunately, the background models built by
these systems are often sparse, due to the many regions of uniform brightness where
stereo estimation fails in a typical background training sequence. Additionally, most
of these systems are based on exhaustive stereo disparity search.

In contrast, we show here how dense, fast range-based tracking can be performed
with modest computational complexity. We recover dense depth data using multiple-
gain imaging and long-term observation approaches. We match uniform but unoc-
cluded planar regions in the scene and interpolate their interior range values. We apply
ordered disparity search techniques to prune most of the disparity search computa-
tion during foreground detection and disparity estimation, yielding a fast, illumination-
insensitive 3-D tracking system.

When objects are moving on a ground plane and are observed from multiple widely-
separated viewpoints, rendering an orthographic vertical projection of foreground ac-
tivity is useful [13, 3, 2, 17]. A “plan-view” image facilitates correspondence in time
since only 2D search is required. Typically, previous systems would segment fore-
ground data into regions prior to projecting into a plan-view, followed by region-level
tracking and integration, potentially leading to sub-optimal segmentation and/or object
fragmentation. (But see [12] for a way to smooth fragmented trajectories.)

Instead, we develop an approach which altogether avoids any early segmentation
of the foreground data. We merge the plan-view images from each viewpoint and es-
timate over time a set of trajectories that best accounts for the integrated foreground
density. Trajectory estimation is performed using a dynamic programming-based al-
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Figure 1: The problem with sparse range backgrounds. Given a sparse background
model (e) of a scene (a), a new range image with a foreground person (b), and a new
range image with no foreground object but a changed illumination condition (f), we see
that a conservative segmentation (c,g) misses many foreground points on the object.
However the alternative approach (d,h), has many false positives when the illumination
changes, and erroneously includes background points in the foreground. To achieve
illumination invariance one must adopt a conservative approach and obtain very dense
range background models.

gorithm, which can optimally estimate the position over time as well as the entry and
exit locations of an object. This contrasts previous approaches, which generally used
instantaneous measures, and/or specific object creation zones to decide on the number
of objects per frame [3, 13].

In the next section, we detail our new algorithm for computing dense range-based
foreground estimates and for fast estimation of foreground disparities. Following that,
we introduce a plan-view tracking representation and our algorithm for optimally es-
timating trajectories with limited temporal extent. We show how this method can ac-
curately detect the entry and exit of objects without constraints on the spatial location
of such events. We finish with a discussion of the overall system’s performance and
implications, as well as possible avenues for future work.

2 Range-based foreground detection

Segmentation of foreground regions using range measurements is inherently robust to
the illumination variation that disrupts most color-based approaches. However, when
range data is used directly to build background models, experience shows that the mod-
els are often sparse and are well-defined at fewer points than in a color model [7, 5].
These background models will have pixels which are set to an “unknown” depth value.

With a sparse depth map, one has to decide whether to detect foreground pixels
when the background is invalid and a new range value is observed. The conservative

3



(a)

(b) (c)

Figure 2: Stages in building a dense background model. (a) Examples of variable gain
and illumination conditions for a scene. (b) Map of valid disparity values for each
condition. (c) Map of valid disparity values for integrated disparity map.

option–not declaring the pixel foreground–will forever prevent detection of any valid
foreground points in the empty regions of the background. This will lead to Type
I errors (Figure 1(c).) The alternative approach, declaring a pixel to be foreground
even when the background is undefined, leads to Type II errors. If imaging condition
changes such that a previously uniform background region suddenly has contrast and a
defined range value, then a background point will incorrectly be declared a foreground
point. (Figure 1(h)). This can commonly happen when the illumination level changes
and pixels de-saturate, or when shadows or other projections are cast on a uniform
surface.

To overcome this problem we construct dense background models with long-term
and extended dynamic-range data. We can resolve depth values within unoccluded,
uniform, and planar regions using a constraint on the appearance of these regions in
two views. We also use predictive disparity search to prune unnecessary computation
and quickly estimate foreground regions of new images.

2.1 Extended dynamic range stereo

Variable gain (or equivalently, variable aperture or extended dynamic range) imaging
has been developed for intensity model acquisition with wide dynamic range [6, 15],
but has not to our knowledge been applied to stereo range estimation. This particularly
benefits disparity estimation, since different regions of a scene likely will have maximal
contrast at different camera gain settings. With any single gain setting, a large portion
of the image may be (de-)saturated, yielding unknown depth values.

Correspondence matching with extended range intensity images is straightforward–
one can simply apply traditional matching algorithms to floating point pixel intensity
data. However, acquiring extended range intensity images from a conventional camera
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requires a relatively precise photometric calibration of each camera. If photometric
calibration is not available, we can approximate the result by separately computing
disparity at each gain setting, and integrating the results over multiple observations.

Our basic stereo engine is based on classic window-based robust correspondence.
If ILg;t(~x) and IRg;t(~x) are the rectified left and right intensity images acquired at time
t and gain level g, indexed by pixel location ~x = [x y]T , we denote the quality of a
disparity match using a match function

D(ILg;t; I
R
g;t; ~x; d) =

�

X

~n2N

jjT~x;~n(I
L
g;t(~x+ ~n)� T~x;~n(I

R
g;t(~x+ ~n+ [d 0]T ))jjr

for some suitable neighborhood N and robust transform T (e.g., [19]) and/or robust
norm jj � jjr (e.g., [4]).

At each pixel, we can apply the standard technique of evaluating D across all dis-
parities, testing whether these values can be approximated well by a single mode. If
so we set the match value d̂(~x; g; t) to be the disparity with the highest match, and
D̂(~x; g; t) to be the match value. When the distribution is not approximated by a single
mode of sufficient height, we declare the pixel invalid d̂(~x; g; t) = null. We compute a
global estimate of �D , the standard deviation of D̂, based on D̂ values when the same
d̂ is chosen in two consecutive frames.

2.2 Long term observation

To acquire background models online without an training sequence of foreground-free
observations, we use a variant of the algorithms presented in [7] and [9]. During back-
ground training, we incrementally compute a histogram of disparity values across a
range of time and gain conditions. Given a new range observation d̂(~x; g; t), we incre-
ment a histogram HB(~x; d̂(~x; g; t)). After a period of background training, we deter-
mine the background disparity values by inspecting HB to find modes which are large
and far. We note that choosing the farthest modes helps to reduce problems of disparity
ambiguity in periodic textures.

We choose the background values to be those which are less than the median valid
disparity over time, dB(~x).1 We then set a background weight map WB to have the
same values as HB , except that any values greater than dB are set to zero. We require
that the ratio of valid to invalid range observations at a pixel be sufficiently large to keep
a background value. If this ratio is not greater than a threshold (typically � = 0:1), then
we set the background to be undefined, dB(~x) = null, and WB ; HB to be uniformly
zero.

Gathering background observations over long-term sequences has the advantage
that lighting variation can be included in the background training set. Extreme lighting
variation is useful, since it can cause previously uniform regions to have apparent con-
trast. Either the overall (ambient) or relative (shadow or projected texture) illumination

1For scenes where the background is covered more than half the time, we could use a rank filter with
lower threshold.
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level can cause contrast to appear where previously the image region was uniform. As
with variable gain, each illumination condition will likely yield a different pattern of
valid/invalid range.

We generally choose to observe the natural variation of illumination, e.g., from
natural outdoor light entering through windows, and from users’ regular actuation of
indoor lighting appliances. However, it is also possible to specifically train the back-
ground using active illumination if desired. During a background training period we
also set the camera parameters to cycle through the range of possible gain settings.
Figure 2(a) shows a set of images taken under different gain and illumination condi-
tions, and Figure 2(b) shows the map of valid range pixels computed from stereo pairs
in each of these conditions. Figure 2(c) shows the map of valid disparity values for an
integrated background recovered from the set of variable gain and illumination training
data.

2.3 Detection of unoccluded uniform planar regions

In indoor environments there are many planar uniform regions on which disparity is
difficult to obtain, even with long-term, variable-gain observations. In general, de-
termining whether to interpolate range values within such surfaces without inferring
global structure in the scene is difficult.

However, there is one special case that is locally computable and proves to be par-
ticularly useful for our purposes. When a planar uniform region is unoccluded in two
views, the extent of the homogeneous patch in each view will be equivalent, accord-
ing to the homography determined by the stereo viewing geometry and the orientation
of the patch in the world. This condition often happens in practice–for example in
saturated pixels in dark or light clothing worn by a person in the scene (e.g., Figure 3).

If the correspondences at the border of the region are well approximated by a ho-
mography and are consistent with the epipolar stereo constraint, we can test to see
whether the shape of the homogeneous patch in each view is related by the appropriate
warping function. We can compute a boolean image indicating the extent of the uni-
form region in each image, warp one according to the given homography, and compare
the overlap of the resulting images. If they agree, then we mark this to be a uniform
solid plane hypothesis.

There are two degenerate cases: a region from a window looking out to a com-
pletely featureless background, and a solid but non-planar region with no apparent
texture. By maintaining the hypothesis throughout an extended time period, we can
alleviate the impact of the former and only keep the hypothesis if no object is ever seen
further in depth at any point within the region. The latter degeneracy seems unavoid-
able, but has not been a problem in practice.

Our method is related to the classic idea of region stereo, however we do not at-
tempt to perform a dense color segmentation of the image as a pre-processing step,
and only opportunistically apply the technique when there are large uniform connected
components in the scene. We also make explicit use of planar homographies and the
epipolar constraint to constrain possible matches.
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Figure 3: Disparity estimation with uniform planar unoccluded regions. We match
a candidate homography between connected components of uniform regions in two
views. Unoccluded planes will yield connected component shapes that exactly match
according to the given homography. Occluded planes, such as the computer monitor
under the user’s arm in the far background, or non-planar objects, such as the plant in
the foreground, will not have equivalent shapes and will not be matched. In this exam-
ple uniform regions were determined by saturated pixels, and the plane was restricted to
be fronto-parallel so that image plane translation would determine equivalent matches.
(a) shows a stereo pair, (b) saturated pixels in each view, (c) connected components
that exactly match in both views for some translation, (d) computed disparity values
for each region, shown in grayscale.

2.4 Fast foreground disparity estimation

Fast foreground detection is necessary to detect rapidly moving objects and dynamic
activity patterns. Traditional approaches to tracking with stereo-based backgrounds
usually have relied on general-purpose stereo computation, which exhaustively searches
for the best disparity matches at each frame. However most of this computation is
unnecessary for scenes with predictable backgrounds, as pointed out by [11]. They
demonstrated how disparity testing could find foreground silhouettes, given a previ-
ously computed static background model. We have extended their method to the case
of dynamic backgrounds with multiple range modes, and to predict the entire range
image, including disparities in foreground regions.

We use our background disparity weights,WB together with similar weights corre-
sponding to short-term foreground predictions, WF , to guide the disparity search in a
new frame. For each new range match we increment WF as we increment WB above,
but only after we reduce the previous values of WF by a constant factor (typically

 = 0:9):

WF (~x; d) = 
WF (~x; d) + Æ(d� d̂(~x; g; t))

where Æ(x) is the impulse function at x = 0.
We maintain a separate WB and WF for each pixel in the image. Given a new

frame at gain g and time t we find those (d�i ; w
�
i ) with sufficiently large value:

jjD(ILg;t; I
R
g;t; ~x; d

�
i )� D̂(~x; g; t)jj2 <? ��2D

and whose background or foreground weight is also above a threshold, typically � =
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0:25. (Usually � = 2.) If no such candidate is confirmed, we compute all disparity
values and estimate d̂ using the conventional approach described above. If the selected
disparity is less than dB(~x), we label it foreground. Points for which dB = null or
d̂ = null are by definition not foreground. During a foreground detection phase we
have the option of using the automatic gain control setting, or searching through the
range of gain levels. If run-time speed is the primary concern, we choose the former
approach.

This search pruning optimization can dramatically reduce run-time costs when
the foreground regions of a scene are relatively small or are moving slowly. The fi-
nal result of range-based foreground detection is a map of foreground pixels ~p j =
(cj ; xj ; yj ; tj ; dj), each from a particular location x; y in camera c at time t with dis-
parity d.

3 Plan-view trajectory estimation

We combine information from multiple stereo views to estimate the trajectory of ob-
jects over time. The true extent of an individual object in a given image is generally
difficult to identify. An optimal trajectory segmentation ought to consider the assign-
ment of an individual pixel to all possible trajectories estimated over time. Systems
which perform an early segmentation and grouping of foreground data before trajec-
tory estimation preclude this possibility.

We adopt a late-segmentation strategy, finding the best trajectory in an integrated
spatio-temporal representation that combines foreground pixels from each view. By
assuming that objects move on a ground plane and do not overlap in the vertical di-
mension in our environment, a “plan-view assumption” allows us to completely model
instantaneous foreground information as a 2-D orthographic density projection. Over
time, we compute a 3-D spatio-temporal plan-view volume.

We project (xj ; yj ; dj) from each foreground point ~pj into world coordinates (Uj ; Vj ;Wj)
using the calibration given by camera cj . (See Figure 4.) U; V are chosen to be orthog-
onal axes on the ground plane, and W normal to the ground plane. We then compute
the spatio-temporal plan view volume, with P (u; v; t) =

P
f~pj jUj=u;Vj=v;tj=tg

1.

3.1 Distance transform-based dynamic programming

We characterize the quality of a trajectory by its smoothness over time, and the support
of the object track in each time frame. Given P (u; v; t) and a set of possible poses and
positions of the object at each time step, we characterize a single optimal trajectory
over all time as,

L� = argmax
L

X

0<t�T

M(~lt)�
X

0<t<T

d(~lt;~lt+1) (1)

where ~lt is one of the possible discrete 2-D location, size and pose parameters of the
object in frame t, L = f~lt j 0 < t < Tg is the object trajectory, M(~lt) is the support
of the object track at location ~lt, and d(~lt;~lt+1) is cost of matching ~lt with ~lt+1. We
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Figure 4: Foreground points are projected from each view individually to a plan view
representation, then are integrated into a single spatio-temporal sequence before seg-
mentation into individual trajectories is performed.
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Figure 5: Plan view diagram of office environment used for example in previous figure.
Workstations are shown as rectangles, and a sitting area is shown as chairs and couch
around an oval table. Three trinocular stereo cameras, shown as black triangles with
three circles, are drawn at the approximate location where they are mounted in the
ceiling.

compute support to be the integral of the plan-view density within the shape given by
S(~lt):

M(~lt) =
X

(x;y)2S(~lt)

P (x; y; t)

Classically, it is possible to solve equation (1) with complexity O(m2T ) using dy-
namic programming techniques [1]. Unfortunately,m is the number of discrete config-
urations, som2 can grow prohibitively large. Using the distance transform formulation
introduced in [8], we can reduce this complexity to O(mT ), by restricting the form
of d to be the norm or norm squared of transformed location values. We simply set
d(~lt;~lt+1) = (~lt � ~lt+1)

T
V
�1(~lt � ~lt+1), where V is a diagonal matrix of variances

for each pose parameter. This simply says that each pose parameter should change
slowly over time.

To solve equation (1), we first compute the best value of the final ~lT , as a function
of the location at the previous time using dynamic programming:

BT (~lT�1) = max
~lT

(M(~lT )� d(~lT�1;~lT ))

Recursively, we then compute the best value of ~lt as a function of ~lt�1

Bt(~lt�1) = max
~lt

(M(~lT )� d(~lt�1;~lt) +Bt+1(~lt))

and finally B0 = max~l0(M(~l0) + B1(~l0)). The optimal trajectory is then given by
replacing max with argmax in the above equations and reversing the recursion to
compute the optimal location at each time, ~l�t . This method finds a single optimal
trajectory from the initial time 0 to the final time T .
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Figure 6: (a) (U,V,T) plot of plan-view foreground density over time for a sequence
with three moving people. The third person enters around frame 20. (b) Segmentation
using dynamic programming method described in text.
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3.2 Trajectory start/end determination

A difficult challenge in person tracking systems has been the estimation of the num-
ber of people a given environment under general entry and exit conditions. Previous
systems [13] have relied on specific spatial zones to delimit the start and end of person
trajectories, while other systems generally use instantaneous criteria to initiate or termi-
nate a new track. We take advantage of our spatio-temporal plan-view representation to
optimally estimate trajectory extent as well as shape in a single dynamic programming
optimization.

We extend the above method to find trajectories with explicit start and end points.
Let

(L�; s�; e�) = argmax
L;s;e

X

s�t�e

(M(~lt)�  ) +
X

s�t<e

d(~lt;~lt+1) (2)

where  is the cost of extending (s�; e�) per time unit.
Fortunately, we can solve equation 2 by modifying the recursive algorithm above.

First we replace M(l) with (M(l)�  ) in the equations above. After computing each
Bt, we inspect each location to check if Bt(~lt�1) is negative. If so, we mark that
location, indicating that if the object goes through ~lt�1, that should be the end of the
trajectory. The start of the trajectory is given by the location maximizing B s(~ls), over
all locations and time frames. The trajectory can be found by tracing back from ~l�s�

until reaching a location marked as a trajectory end. The estimation of L �; s�; e� for
a single trajectory is optimal in that the dynamic programming method computes a
global maxima of equation 2.

3.3 Implementation and Examples

Figure 5 shows the configuration of cameras in our test environment. To align multiple
views, we expect to use an automatic calibration process where objects moving on the
plane are used to determine the orientation of each camera view [14, 13]. However,
this section’s results were obtained with an approximate manual calibration based on
hand selected correspondences in each camera view.

We collect variable gain and illumination images in our environment during a back-
ground acquisition phase. When there are multiple objects in the scene, we solve for a
set of trajectories by first finding the trajectory with highest quality given by Equation
2, removing the points that contributed to its support in the plan-view sequence, and
repeating until no further trajectory can be found with positive quality.

For the examples shown in this section, we used a simplified shape model of rectan-
gular regions with fixed size and pose, given by average human torso dimensions. We
expect to extend our implementation shortly to include varying size and pose, which
will allowing extended arm position tracking, etc. We discretized ground plane posi-
tion to a 320x240 grid, and set  to be the median value of d̂(l) evaluated at random
locations. (Again, assuming that our scene is on average more than half background.)
We truncate the time history at 50 frames. Figure 6 shows the result on a sequence of
3 people moving within our test environment.
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4 Discussion and Future Work

While the results are appealing, a problem remains: when the trajectory of two objects
or people overlap, it is not possible from a foreground density representation to disam-
biguate trajectories if they subsequently separate. Appearance information can resolve
this, as shown by [10]. Unfortunately, including this in the dynamic programming op-
timization would greatly increase the size of the state space of locations at each time
frame, making the solution for the optimal trajectory impractical. Resolving this is a
topic of ongoing and future work. We plan to use a trajectory-level correspondence
process that uses a graph based on the overall trajectory data, computes aggregate ap-
pearance information along each edge (e.g., using color histograms), and then matches
these features to resolve identity along each edge.

Our system currently uses an iterative approach to estimating multiple trajectories,
and for each person solves a batch trajectory estimation problem. This is clearly im-
practical for real-time, on-line use. To overcome this limitation we are developing an
incremental version of the algorithm that maintains an more compact representation of
prior trajectory state.

Finally, we have left open the issue of what schedule of gain settings to use when
building a background model and when detecting foreground points. A topic of future
work is to determine the minimum number of samples needed to obtain a maximally
dense integrated range image for a given scene or scene class.

5 Conclusions

This paper presents new algorithms which make tracking objects in widely varying
illumination conditions possible. There are two main contributions presented.

First, we formulate stereo range estimation using extended dynamic-range imagery
and show how a dense background model can be built with long-term observations.
Without this, stereo range data is too sparse to construct a useful background model
for tracking. We derive a constraint on the projection of planar uniform surfaces in
stereo views and use this to interpolate range within such regions. We implement our
scheme with a predictive, ordered disparity search technique, that prunes most of the
computation typically required to process new images.

Second, we developed an optimal method for estimating trajectories without per-
forming an initial segmentation of foreground points. Foreground points from multiple
views are projected into a plan-view density representation, and are segmented into
object regions as part of a globally optimal dynamic programming optimization. Es-
timation of trajectory extent (object entry/exit) is included in the global optimization,
and does not require any spatial constraints. We demonstrated our prototype system
estimating the trajectory of several people moving in an environment.
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