32 research outputs found

    Tailoring CO2 adsorption and activation properties of ceria nanocubes by coating with nanometre-thick yttria layers

    Get PDF
    [EN] Ceria (CeO2) is a ubiquitous component in catalysts for environmental protection processes, especially those devoted to CO2 valorisation. Aimed at preparing ceria-based nanomaterials with enhanced CO2 adsorption and activation properties, both the surface acid-base and redox features of ceria nanocubes were modulated by a novel, simple, wet chemistry synthetic strategy consisting of their coating with yttria (Y2O3) layers of variable thickness in the nanometre scale. The as-synthesised samples were characterised with special attention to their surface basicity and reducibility. Characterisation results revealed that the surface doping with yttria not only improved both the reducibility at low temperature and CO2 adsorption capacity of ceria nanocubes, but also introduced a variety of basic sites with different strength. Finally, the careful control of the yttria layer thickness allowed to modulate these effects and thereby the ability of nanostructured ceria to adsorb and activate the CO2 molecule

    Size-Controlled Water-Soluble Ag Nanoparticles

    Get PDF
    Ag nanoparticles of two different sizes (1 and 4 nm) were prepared within an apoferritin cavity by using an Ag+-loaded apoferritin as a nanoconfined environment for their construction. The initial amount of Ag' ions injected in the apoferritin cavity dictates the size of the final Ag particles. The protein shell prevents bulk aggregation of the metal particles, which renders them water soluble and extremely stable

    Catalytic Performance of Ni/CeO2/X-ZrO2 (X = Ca, Y) Catalysts in the Aqueous-Phase Reforming of Methanol

    Get PDF
    In this study, we reported on the effect of promoting Ni/ZrO2 catalysts with Ce, Ca (two different loadings), and Y for the aqueous-phase reforming (APR) of methanol. We mainly focused on the effect of the redox properties of ceria and the basicity provided by calcium or yttrium on the activity and selectivity of Ni in this reaction. A systematic characterization of the catalysts was performed using complementary methods such as XRD, XPS, TPR, CO2-TPD, H-2 chemisorption, HAADF-STEM, and EDS-STEM. Our results reveal that the improvement in reducibility derived from the incorporation of Ce did not have a positive impact on catalytic behaviour thus contrasting with the results reported in the literature for other Ce-based catalytic compositions. On the contrary, the available Ni-metallic surface and the presence of weak basic sites derived from Ca incorporation seem to play a major role on the catalytic performance for APR of methanol. The best performance was found for a Ce-free catalyst with a molar Ca content of 4%

    Using the ℓ1-norm for Image-based tomographic reconstruction

    Get PDF
    This paper introduces an ℓ1-norm model based on Total Variation Minimization for tomographic reconstruction. The reconstructions produced by the proposed model are more accurate than those obtained with classical reconstruction models based on the ℓ2-norm. This model can be linearized and solved by linear programming techniques. Furthermore, the complementary slackness conditions can be exploited to reduce the dimension of the resulting formulation by removing unnecessary variables and constraints. Since the efficacy of the reduced formulation strongly depends on the quality of the dual-multipliers used when applying the reduction method, Lagrangian relaxation is used to obtain near-optimal multipliers. This allows solving larger instances in an efficient way

    Combining Deep Learning and Compressed SensingMethods for the 3D Characterization of Ultra-ThinEpitaxial Layers Grown on Controlled-Shape Nano-Oxides

    Get PDF
    Using a nanostructured platform (a controlled-shape nano-oxide) and conventional wet impregnation techniques, powder-type materials have been prepared in which atomically thin surface layers are deposited under very mild conditions. More importantly, an advanced methodology, combining energy dispersive X-ray spectroscopy-scanning transmission electron tomography (STEM-EDX ET) and deep learning denoising techniques, has been developed for the 3D compositional characterization of these unique nanosystems. The complex case of LaOx-coated CeO2 nanocubes is illustrated. For these, aberration corrected 2D STEM-EDX evidence that ceria nanocubes become covered with a 2–4 atom-thick layer of a La, Ce-mixed oxide with spatially varying composition. However, STEM-EDX ET reveals that this layer distributes unevenly, patching most of the available nanocube surface. The large flexibility and spread availability of the involved synthetic techniques enables, using the tools here developed, a wide exploration of the wealth of questions and applications of these intriguing, atomically thin, surface oxide phases10 página

    Understanding the potential-induced activation of a cobalt MOF electrocatalyst for the oxygen evolution reaction

    Get PDF
    Metal–organic frameworks (MOFs) are attractive porous materials for electrocatalytic applications associated with carbon-free energy storage and conversion. This type of material usually requires a post-treatment to be used as electrocatalyst. The present work comprehensively investigates the electrochemical activation of a cobalt-MOF@Nafion composite that produces outstanding electrocatalytic performance for the water oxidation reaction at neutral pH. A detailed electrochemical characterization reveals that the electroactivation of the composite requires the participation of the oxygen evolution reaction (OER) and leads to a significant increase in the electroactive population of cobalt centers. It is shown that an increase of the applied activation potential in the OER region results in a faster electroactivation of the Co-MOF without affecting the intrinsic electrocatalytic properties of the active cobalt centers, as evidenced by the unique linear correlation between the electrocatalytic OER current and the population of electroactive cobalt. In addition, at structural level, it is shown that the electrochemical activation causes the partial disruption of the Nafion adlayer, as well as morphological changes of the Co–MOF particles from a compact, rounded morphology, before electrochemical activation, to a more open and expanded structure, after electroactivation; with the concomitant increase of the number of surface–exposed cobalt centers. Interestingly, these cobalt centers retain their coordinative chemistry and their laminar distribution in the nanosheets at the nanoscale, which is consistent with the preservation of their intrinsic electrocatalytic activity after potential–induced activation. In this scenario, these results suggest that only the electroactivated cobalt centers with good accessibility to the electrolyte are electrochemically active. This work provides a better understanding of the processes and structural changes underlying the electrochemical activation at neutral pH of a Co–MOF for boosting the electrocatalytic water oxidation reaction9 página

    Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

    Get PDF
    Electron Tomography (ET) reconstructions can be analysed, via segmentation techniques, to obtain quantitative, 3D-information about individual nanoparticles in supported catalysts. This includes values of parameters out of reach for any other technique, like their volume and surface, which are required to determine the dispersion of the supported particle system or the specific surface area of the support; two figures that play a major role in the performance of this type of catalysts. However, both the experimental conditions during the acquisition of the tilt series and the limited fidelity of the reconstruction and segmentation algorithms, restrict the quality of the ET results and introduce an undefined amount of error both in the qualitative features of the reconstructions and in all the quantitative parameters measured from them. Here, a method based on the use of well-defined 3D geometrical models (phantoms), with morphological features closely resembling those observed in experimental images of an Au/CeO2 catalyst, has been devised to provide a precise estimation of the accuracy of the reconstructions. Using this approach, the influence of noise and the number of projections on the errors of reconstructions obtained using a Total Variation Minimization in 3D (TVM-3D) algorithm have been determined. Likewise, the benefits of using smart denoising techniques based on Undecimated Wavelet Transforms (UWT) have been also evaluated. The results clearly reveal a large impact of usual noise levels on both the quality of the reconstructions and nanometrological measurement errors. Quantitative clues about the key role of UWT to largely compensate them are also provided.This work has received support from Projects: PID2020-113006-RB-I00, PID2019-110018GA-I00, PID2020-114594GB-C22, funded by MCIN/AEI/https://doi.org/10.13039/501100011033.This work has also been co-financed by Project ref: MAT2017-87579-R and by the 2014 -2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia, Project references: FEDER-UCA18-107139, FEDERUCA18-106895 and P18-FR-1422. STEM ET experiments were recorded at the DME-UCA Node of the Spanish Singular Infrastructure for Electron Microscopy of Materials (ICTS ELECMI)

    The Role of Gold-Alumina Template in the Electrochemical Deposition of CeO2 Nanotubes

    Get PDF
    Electrochemical synthesis employing porous membranes previously metalized with a gold layer as a template is an easy and widespread method to obtain 1D nanostructures. Nevertheless, experimental factors for tuning the morphology and structural details of such nanostructures are still investigated. The influence of the amount of gold on morphology and structure of the 1D systems is studied for the first time. For this purpose, CeO2 nanotubes are synthesized via template-based lectrodeposition inside the pores of gold-sputtered anodic aluminum oxide (AAO). X-ray diffraction and electron microscopy techniques, including 3D electron tomography, are applied for the characterization of the template and the nanostructures. On one hand, the results reveal how gold is deposited on top and inside the pores of the AAO as a thin layer or as particles. On the other hand, the 1D systems consist of nanotubes formed by randomly oriented fluorite-like nanocrystals (2–5 nm), which features a network of inner walls whose compactness directly relates to the thickness of the gold-sputtered layer. From the combined analysis of voltage–time curves recorded during electrodeposition and the 2D, 3D structural information, a growth mechanism is proposed, which may enlighten paths to tailor the morphology and properties of CeO2 1D nanostructure

    Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry

    Get PDF
    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are com- pared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate repre- sentation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters

    Size, nanostructure, and composition dependence of bimetallic Au–Pd supported on ceria–zirconia mixed oxide catalysts for selective oxidation of benzyl alcohol

    Get PDF
    A bimetallic Au–Pd catalyst supported on ceria–zirconia with Au:Pd molar ratio 0.8 has been synthesized using a simultaneous deposition–precipitation method and oxidized at 250, 450, and 700 °C in order to modify its particle size, nanostructure, and composition. Combined X-ray energy dispersive spectroscopy (XEDS)and X-ray photoelectron spectroscopy (XPS)analysis clearly evidence that the bimetallic Au–Pd catalyst oxidized at 250 °C is made up of a mixture of monometallic Au and Pd and bimetallic Au–Pd nanoparticles with Au:Pd ratios varying over a wide range. Increasing oxidation temperature leads to a stronger interaction between Au and Pd. Meanwhile, a slight increase of particle size and a narrowing of the Au:Pd ratio in the bimetallic nanoparticles take place. Compared with titania and activated carbon supports, the resistance against sintering at high temperatures of Au–Pd metal particles supported on ceria–zirconia is proven to be higher. A synergistic effect has been observed for selective oxidation of benzyl alcohol on these catalysts. The catalytic activity decreases only slightly after oxidation at 450 °C. However, oxidation at 700 °C results in much lower catalytic activity. Migration of Pd onto Au particles during oxidation of benzyl alcohol enhances the catalytic activity of a physical mixture of monometallic Au and Pd supported on ceria–zirconia catalysts. This fact, jointly with an analysis of the intrinsic activity, reveals the influence of the actual nature of Au–Pd interactions in the bimetallic particles, which points to higher activity of Au@Pd or AuPd@Pd nanostructures on ceria–zirconia support
    corecore