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A B S T R A C T

This paper introduces an 𝓁1-norm model based on Total Variation Minimization for tomographic reconstruction.
The reconstructions produced by the proposed model are more accurate than those obtained with classical
reconstruction models based on the 𝓁2-norm. This model can be linearized and solved by linear programming
techniques. Furthermore, the complementary slackness conditions can be exploited to reduce the dimension of
the resulting formulation by removing unnecessary variables and constraints. Since the efficacy of the reduced
formulation strongly depends on the quality of the dual-multipliers used when applying the reduction method,
Lagrangian relaxation is used to obtain near-optimal multipliers. This allows solving larger instances in an
efficient way.
1. Introduction

Nowadays, the rapid advances in Nanoscience and Nanotechnolo-
gies are providing new nanomaterials with a wide range of applications
in environmental protection, new green energy sources, photonics and
catalysis, among others. The usefulness of these new materials strongly
depends on the ability of controlling their structure and morphology
at the nanometer (nm) scale, given that many of their physical and
chemical properties are highly dependent on the shapes exhibited by
their components.

In this regard, Electron Tomography (ET), the subject of study of
this paper, has become the primary imaging tool in Materials Sci-
ence for the reconstruction of 3D materials measured at the nm scale,
see Araújo et al. (2021), Midgley and Dunin-Borkowski (2009), Nico-
letti et al. (2013), Thavavel et al. (2012) for alternatives image pro-
cessing. ET is a well-known technique widely used for reconstructing
3D structures from tilt series of 2D-projections of a sample. This kind
of reconstruction method provides an image of the nanomaterial under
study from a set of projections recorded using an electron microscope.
This set of projections of the nanomaterial, which are obtained from
different tilt angles, is the input data of the reconstruction algorithms
and it is known as sinogram. Together with Computerized Axial Tomog-
raphy and Multidetector Computed Tomography, ET constitutes one of
the main techniques used in the field of tomography. These techniques
differ from each other in the way in which projections are obtained or
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the number of images that are taken simultaneously, and usually have
different application areas.

Relevant applications of ET arise, for instance, in the study of the
morphology of highly efficient 3D hybrid polymer solar cells, see,
e.g. Oosterhout et al. (2009) (the analysis of this polymer is particularly
relevant since it is used to replace silicon in solar cells because silicon is
very expensive and polluting) or the ionomer Nafion studied by López-
Haro, Guétaz, et al. (2014), used in the proton exchange membrane fuel
cell (this material is very promising as a zero-emission power sources).
Therefore, ET reconstructions are of great importance to analyse the
structures of nanomaterials which are at nm scale, since these particles
are no visible to humans. This technique allows us to recover the
volumes of the nano-objects aiming at studying the morphology of these
structures.

Experiments in ET are tilted around a single axis (or a dual axis)
at incremental degrees of rotation, see Midgley et al. 2007 and Sup-
plementary material S1.1 For each tilt, a projection is obtained when
a set of parallel electron beams crosses the sample. Fig. 1 shows the
process of recording different projections of a nanomaterial where 𝜃 =
−70◦, 𝜃 = 0◦ and 𝜃 = 70◦ are different tilt angles. The recorded
images are grey-scale images showing bright areas (high intensities),
which correspond to the locations where the electron beam crosses the
material, and dark areas, which correspond to the background (low
intensities).
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Fig. 1. Projections of a nanomaterial recorded from different tilt angles.

The most commonly reconstruction methods used in ET are based
on algebraic approaches. These methods find a suitable solution to
a system of equations 𝐴𝑥 = 𝑏, where the unknown 𝑥 denotes the
intensity of each pixel in the reconstructed 𝑛×𝑛 image. 𝐴 is the so-called
projection matrix and 𝑏 is the vector of the 2D-projection, recorded
experimentally (also known as sinogram, see Section 2).

Taking into account the above observations, the three main dif-
ficulties in the reconstruction process in ET are the following. First,
as described, most experiments cover just the [−70◦, +70◦] tilt range
due to technical limitations. This leads to the so-called missing wedge
effect, which produces distorted or elongated morphologies in the
𝑋𝑍 direction where 𝑌 is the rotation axis; for example, a circle is
reconstructed as an ellipse. Second, many materials can suffer severe
morphological changes during the tilt series acquisition, due to beam
damage (materials are exposed to high energy electron beams, e.g. 200
keV, while projections are recorded). To avoid this deleterious effect,
the number of projections is often limited during the experiment, which
may also result in a reduction of the reconstruction quality. And third,
the dimension of matrix 𝐴 is huge because it has 𝑛2 columns and the
number of rows is on the order of 𝑛, see Section 2 for further details, and
𝑛 usually takes values in {256, 512, 1024}. Therefore, a difficulty stems
from the very high dimension of the system 𝐴𝑥 = 𝑏 to be solved. This
notably reduces the alternatives as for the solution methods that can
be effectively applied, to those able to handle the systems efficiently.

To overcome the above difficulties, the efforts in ET have focused
not only at improving the reliability of the information recorded by
microscopes, but also at decreasing the total number of projections
required to reconstruct the volumes with sufficient accuracy, as well as
at looking for effective solution methods for the optimization problem
associated with each projection. In this regard, most recent methods
are based on so-called Compressed Sensing. In particular, algorithms
aiming at Total Variation Minimization (TVM) have proven to be very
efficient (Goris et al., 2012; Li et al., 2013; Luo et al., 2018). These
methods consider an objective function based on the sum of the 𝓁2-
norm of the image gradient and the deviation of the reconstructed
sinogram (𝐴𝑥) with respect to the original sinogram (𝑏), measured with
the 𝓁2-norm. This approach leads to solve optimization problems with a
quadratic objective function and linear constraints. The most efficient
methods used nowadays for solving these problems are based on the
augmented Lagrangian multiplier method (Li et al., 2013).

In this paper we consider a reconstruction optimization model based
on the TVM paradigm but using the 𝓁1-norm, instead of the classical
𝓁2-norm. In the literature, we can find references to some applications
where solution methods based on the use of the 𝓁1-norm outperform
classical solution methods considering the 𝓁 -norm. Two examples of
2

2

such approaches are (Fu et al., 2006) for image restoration problems,
and Pi et al. (2021) for convex clustering problems. The proposed
model has several advantages in comparison to the 𝓁2-version. As will
be seen, the formulation using the 𝓁1-norm provides more accurate
definition of the different structures that constitute the object under
study and, therefore, they can be differentiated more efficiently in
the reconstructions, providing better quality reconstructions, using a
smaller number of projections. Furthermore, the use of the 𝓁1-norm
allows us to formulate the problem as a linear program (LP), so linear
programming tools can be used to obtain efficiently an optimal solution
of the proposed model. This is important, taking into account the high
dimensions of the instances that arise in practice, since the solution of
the resulting linear programme with off-the-shelf solvers can be rather
time-consuming for large images. In particular, we develop a solution
method, which allows us to reconstruct such images in an efficient way.
This procedure is based on the solution of a smaller formulation, ob-
tained after reducing the dimension of the original model by removing
unnecessary variables and deriving tighter expressions for some of the
constraints. This elimination test exploits the complementary slackness
conditions of linear programming, using a set of near-optimal dual
variables. Still, in order to take advantage of this test, the dimensions
of the original LPs advise for the use of decomposition methods. In our
case we resort to Lagrangian relaxation to first obtain the values of the
near-optimal dual variables. Lagrangian relaxation is a technique that
has often been successfully applied to solve large-scale optimization
problems of various types (Balasundaram & Kapil, 2010; Fisher, 1985;
Knudsen et al., 2014).

We have applied the 𝓁1-norm in the proposed formulation for dif-
ferent reasons. First, as we can observe in the experiments carried out
in this paper, the 𝓁1-norm formulation provides more accurate edges of
thin structures and therefore, they can be differentiate more efficiently
in the reconstructions. Second, the proposed formulation has shown
a better performance achieving higher quality reconstructions using a
smaller number of projections Moreover, the 𝓁1-norm has allowed us
to formulate the proposed problem as a linear program using linear
mathematical programming tools. We have to include one sentence in
the manuscript where the advantage of using the 𝓁1-norm is explained
(Page 4).

For our computational tests we have used well-known 2D and 3D
phantoms with 512 × 512 and 1024 × 1024 pixels and an experiment
using a real object. Throughout the text, we will refer as phantom to
a perfectly known non-experimental image, which can be compared
with the one obtained with any reconstruction method. The numer-
ical results obtained in our computational experiments support our
proposal, both from a modelling and an algorithmic point of view.
In particular, the proposed 𝓁1-norm model provides reconstructions of
better quality than those obtained with an 𝓁2-norm model. Algorithmi-
cally, the proposed solution algorithm is highly effective in comparison
with both well-known algorithms usually applied to classical TVM
models, and the solution of the proposed 𝓁1-norm formulation with
off-the-shelf solvers. Actually, we show that the effectiveness of the
proposed procedure can be enhanced substantially, because slightly
less accurate reconstructions can be obtained, significantly reducing
computing times. Finally, it should be highlighted that only 8 and 16
projections have been considered.

The main contributions of this paper are: (1) The use of TVM
models using 𝓁1-norm, which outperform state-of-the-art reconstruc-
tion models, both, in terms of the quality of reconstructed nano-object
using ET and with respect to the number of projections needed for
the reconstruction (a remarkable advantage of using fewer projections
is a reduction of the morphological damage of samples due to the
electron beam); and (2) The development of an efficient solution al-
gorithm for the resulting model, suitable for dealing with the very
high dimension instances that arise in practice. Such algorithm is based
on the formulation of the problem as a linear programming one. This

allows us (𝑖) to exploit linear programming properties, in particular,



Expert Systems With Applications 232 (2023) 120848J.J. Calvino et al.
Fig. 2. Projections of 𝑛̄ electron beams for tilt angles 𝜃1 = 45◦ (a) and 𝜃2 = 0◦ (b).

the complementary slackness conditions to reduce the dimension of
the problem; and, (𝑖𝑖) to apply efficiently decomposition methods for
dealing with large-scale linear programming models.

The paper is structured as follows. To make the paper self-contained,
Supplementary Material S1.1 gives a short overview of the principles
of electron tomography and Section 2 introduces the relevant notation
and overviews the state-of-the-art on TVMs. In Section 3, we introduce
the TVM model applying the 𝓁1-norm to the image gradient and to the
deviation of the reconstructed sinogram (𝐴𝑥) with respect to the exper-
imental one (𝑏) and present a linear formulation for it. In this section
we also give a formulation for its dual, and state the corresponding
primal/dual complementary slackness conditions. Then, in Section 4,
we present the elimination test that allows us removing unnecessary
variables and constraints leading to a reduced 𝓁1 reconstruction model,
as well as a solution procedure to solve it. Section 5 develops the
Lagrangian relaxation that we apply to obtain the near-optimal dual
values that will be used in our implementation of the elimination test.
In this section we also describe how to solve the Lagrangian dual using
both subgradient optimization (Bertsekas, 1999; Shor, 1985) and the
volume algorithm (Barahona & Anbil, 2000). Section 5.1 introduces
some properties derived from the complementary slackness conditions
together with other enhancements, which lead to remarkable improve-
ments in computing times and in the quality of the reconstructed
images. Section 6 summarizes and analyses the results of the computa-
tional experiments carried out. The paper closes in Section 7 providing
the main conclusions.

2. State of the art of electron tomography

Since Johan Radon published the first attempt to solve tomography
problems (Radon, 1917), a great effort has been made to develop
new reconstruction methods. The first one is weighted back projection,
which is based on Fourier Central Slice theorem, see Feldkamp et al.
(1984) and Tang et al. (2006). The main objective of these reconstruc-
tion models is to estimate the intensities of each pixel as accurately
as possible. Since reconstruction algorithms based on this type of
models do not provide a high quality images, algebraic algorithms were
developed.

Algebraic reconstruction methods try to calculate a solution for the
system of equations 𝐴𝑥 = 𝑏, where 𝑥 is the image to be reconstructed,
𝐴 a known matrix called projection matrix, and 𝑏 the sinogram, i.e., the
input data obtained from an experimental study with the electron mi-
croscope. Algebraic reconstruction methods usually consider a squared
image with 𝑛×𝑛 pixels and 𝑛̄ ∶= 𝑛

√

2 electron beams for each projection.
This number of electron beams for each projection, 𝑛̄, is chosen to allow
obtaining information of the whole main diagonal of the image, which
3

corresponds to the 45◦ tilted projection and represents the widest area
to be covered, as shown in Fig. 2. Let 𝑝 denote the number of considered
projections, and 𝐴 = (𝐴𝑇

1 ,… , 𝐴𝑇
𝑝 )

𝑇 be the aforementioned projection
matrix, such that the columns represent the pixels of the image and,
for a fixed tilt angle 𝜃 ∈ 𝛩 ∶= {1,… , 𝑝}, the 𝑘th row of 𝐴𝜃 , 𝐴𝜃,𝑘 ∈ R𝑛2 ,
contains information about the pixels that are went through by the 𝑘th
parallel electron beam with 𝑘 ∈ 𝐾 ∶= {1,… , 𝑛̄}, i.e., 𝐴𝜃 ∈ R𝑛̄×𝑛2 .
Since each column of 𝐴 represents a specific pixel and an electron
beam can cross very few pixels of the total image, most components
in the projection matrix 𝐴 take the value 0. Vector 𝑏 = (𝑏1,… , 𝑏𝑝)𝑇 ,
where 𝑏𝜃 ∈ R𝑛̄, i.e., 𝑏𝜃,𝑘 ∈ R is the intensity reported by the electron
microscope, of the 𝑘th electron beam from the projection with tilt angle
𝜃 ∈ 𝛩.

Note that the dimension of matrix 𝐴, is (𝑝𝑛)×(𝑛2), which can be huge
because usual values for the parameter 𝑛 are {256, 512, 1024}. This has
motivated the development of ad hoc models and solution methods for
dealing with the system 𝐴𝑥 = 𝑏, able to produce accurate images even
for a small number of projections.

Traditionally, the system 𝐴𝑥 = 𝑏 was solved with iterative re-
construction algorithms such as Kaczmarz’s algorithm, see Kaczmarz
(1937), renamed as the Algebraic Reconstruction Technique by Gordon
et al. (1970). However, the most popular algebraic reconstruction
model in the literature is the Simultaneous Iterative Reconstruction Tech-
nique which provides accurate reconstructions in low computing times,
see Andersen and Kak (1984) for further details. Still, such models have
some important disadvantages: they require a high number of projec-
tions to produce good reconstructions, and they are highly sensitive
to the noise that appears when recording the experimental projected
images with the electron microscope.

This has motivated the development of ad hoc models and solution
methods for dealing with the system 𝐴𝑥 = 𝑏, able to produce accurate
images even for a small number of projections, and also able to over-
come the above mentioned difficulties. This kind of models are called
Compressed Sensing models, see Candes et al. (2006), Donoho (2006),
and Lustig et al. (2007) for further information. The most popular
Compressed Sensing reconstruction models are based on TVM. These
optimization models remove a high level of noise in the reconstruction
process by looking for a solution to system 𝐴𝑥 = 𝑏 that minimizes the
norm of the image gradient. The TVM models analysed in the literature
usually consider the sum of the 𝓁2-norm of the image gradient as well
as the deviation of the reconstructed sinogram (𝐴𝑥) with respect to the
original sinogram (𝑏), measured with the 𝓁2-norm.

A TVM model can be expressed as:

(TVM) min𝑥∈R𝑛2
∑

𝑖∈𝐼
‖𝐷𝑖𝑥‖,

s.t. 𝐴𝑥 = 𝑏,

where 𝐼 ∶= {1,… , 𝑛2} denotes the index set of the 𝑥 variables, ‖ ⋅ ‖
represents the norm used to measure the Total Variation of image 𝑥,
and 𝐷𝑖 ∈ R2×𝑛2 is used to calculate the image gradient at pixel 𝑖 where
𝐷𝑖𝑥 ∈ R2. In order to compute this gradient, we define its horizontal
and vertical components as 𝐷𝑖 = (𝐻𝑇

𝑖 , 𝑉
𝑇
𝑖 )𝑇 . Let 𝐻 ∈ R𝑛2×𝑛2 be the

matrix that determines the horizontal component of the gradient of 𝑥,
which is defined by

𝐻 =

⎛

⎜

⎜

⎜

⎜

⎜

1 2 3 ⋯ 𝑛2 − 1 𝑛2

𝐻1 1 −1 0 ⋯ 0 0
𝐻2 0 1 −1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐻𝑛2−1 0 0 0 ⋯ 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

. (1)
⎝
𝐻𝑛2 0 0 0 ⋯ 0 0

⎠
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Similarly, the vertical component of the image gradient is given by
matrix 𝑉 ∈ R𝑛2×𝑛2 , defined by

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3 ⋯ 𝑛 𝑛 + 1 ⋯ 𝑛2 − 1 𝑛2

𝑉1 1 0 0 ⋯ −1 0 ⋯ 0 0
𝑉2 0 1 0 ⋯ 0 −1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑛2−𝑛 0 0 0 ⋯ 0 0 ⋯ 0 −1
𝑉𝑛2−𝑛+1 0 0 0 ⋯ 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑛2−1 0 0 0 ⋯ 0 0 ⋯ 0 0
𝑉𝑛2 0 0 0 ⋯ 0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2)

The rows of matrices 𝐻 and 𝑉 are denoted by 𝐻𝑖 ∈ R𝑛2 and 𝑉𝑖 ∈ R𝑛2 ,
respectively, for 𝑖 ∈ 𝐼 . Therefore, the image gradient at pixel 𝑖 can be
calculated as

𝐷𝑖𝑥 = (𝐻𝑖𝑥, 𝑉𝑖𝑥) =

⎧

⎪

⎨

⎪

⎩

(𝑥𝑖 − 𝑥𝑖+1, 𝑥𝑖 − 𝑥𝑖+𝑛), if 𝑖 ≤ 𝑛2 − 𝑛,
(𝑥𝑖 − 𝑥𝑖+1, 0), if 𝑛2 − 𝑛 + 1 ≤ 𝑖 ≤ 𝑛2 − 1,
(0, 0), otherwise.

Another important TVM model was proposed in Rudin et al. (1992).
his model, which works more efficiently with noisy images, has a
quared penalty term in the objective function instead of the set of
onstraints 𝐴𝑥 = 𝑏, and it can be written in the following way:

TVM𝑅𝑂𝐹 ) min𝑥∈R𝑛2
∑

𝑖∈𝐼
‖𝐷𝑖𝑥‖ +

𝜇
2
‖𝐴𝑥 − 𝑏‖22,

here 𝜇 > 0 is a parameter that regulates the trade-off between the
radient of the image and the squared norm of the difference between
he projection of the reconstructed image and the sinogram. In addition,
he intensities of the images we reconstruct will be between 0 and 1,
.e., 𝑥 ∈ [0, 1]𝑛2 .

One of the best-known and widely used algorithms for solving
he TVM and TVM𝑅𝑂𝐹 models is the Total Variation minimization by
ugmented Lagrangian and ALternating direction ALgorithm (TVAL3),
hich is based on the augmented Lagrangian multiplier method, see Li
t al. (2013) for further details.

. The 𝓵𝟏-norm reconstruction model

Next we introduce a reconstruction model, which can be seen as a
VM model based on the 𝓁1-norm. The use of the 𝓁1-norm allows us

to reformulate the resulting optimization problem as a linear program,
so, after a linearization phase, linear programming tools can be used
to solve it. As we will show, the resulting model has proven to be very
effective. Specifically, the 𝓁1-norm model produces better quality re-
constructions than the corresponding 𝓁2 version using the same number
of projections. This is a very important aspect because, as mentioned
in the Introduction, acquiring a large set of projections may damage
the original particle. Therefore, sometimes only a limited number of
projections are available from a particle. Moreover, a small number
of projections also implies large savings in computing times in the
experimental phase.

The 𝓁1-norm reconstruction model that we propose to ET experi-
ments is:

(TV𝓁1
) min𝑥∈[0,1]𝑛2

∑

𝑖∈𝐼
‖𝐷𝑖𝑥‖1 +

𝜇
2
‖𝐴𝑥 − 𝑏‖1,

where 𝜇 is a regularization parameter that controls the level of smooth-
ness in the reconstruction. A small value of 𝜇 provides smooth recon-
structions because the image gradient term, which controls its softness,
becomes the most relevant term in the objective function. On the other
hand, a large value of 𝜇 produces reconstructions with a high level of
detail although noise is not removed from the recovered image. As will
be explained in the Computational Experiments Section, we consider a
wide range of 𝜇 values, from 20 to 214, in order to observe the effect
made by this parameter.
4

First, we will linearize TV𝓁1
so we can apply linear programming

techniques to handle it. To this end, we introduce new non-negative
variables that avoid the non-linearity of the 𝓁1-norm.

Since the differences 𝐴𝜃,𝑘𝑥 − 𝑏𝜃,𝑘 that affect the term ‖𝐴𝑥 − 𝑏‖1
can take positive or negative values, we will express each of these
terms as the difference of two non-negative variables, 𝑧+𝜃,𝑘 and 𝑧−𝜃,𝑘,
for 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾. Therefore, these differences can be rewritten as
𝜃,𝑘𝑥 − 𝑏𝜃,𝑘 = 𝑧+𝜃,𝑘 − 𝑧−𝜃,𝑘, where 𝑧+𝜃,𝑘, 𝑧−𝜃,𝑘 ≥ 0 for 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾.
ccordingly, any optimal solution of TV𝓁1

, satisfies that |𝐴𝜃,𝑘𝑥 − 𝑏𝜃,𝑘| =
+
𝜃,𝑘 + 𝑧−𝜃,𝑘, where at most one of the two new non-negative variables
ill be non-zero because 𝑧+𝜃,𝑘 + 𝑧−𝜃,𝑘 is part of the objective function

hat is minimized. Horizontal and vertical gradients can be decomposed
imilarly obtaining 𝑥𝑖 − 𝑥𝑖+1 = ℎ+𝑖 − ℎ−𝑖 for 𝑖 ∈ 𝐼ℎ ∶= {1,… , 𝑛2 − 1} and
𝑖 − 𝑥𝑖+𝑛 = 𝑣+𝑖 − 𝑣−𝑖 for 𝑖 ∈ 𝐼𝑣 ∶= {1,… , 𝑛2 − 𝑛} respectively, where
+
𝑖 , ℎ−𝑖 , 𝑣+𝑖 , 𝑣−𝑖 ≥ 0. Applying this decomposition to TV𝓁1

, the following
inear TV problem is obtained:

LTV𝓁1
) min

∑

𝑖∈𝐼ℎ
(ℎ+𝑖 + ℎ−𝑖 ) +

∑

𝑖∈𝐼𝑣
(𝑣+𝑖 + 𝑣−𝑖 ) +

𝜇
2

∑

𝜃∈𝛩

∑

𝑘∈𝐾
(𝑧+𝜃,𝑘 + 𝑧−𝜃,𝑘)

s.t. 𝐴𝜃,𝑘𝑥 − 𝑏𝜃,𝑘 = 𝑧+𝜃,𝑘 − 𝑧−𝜃,𝑘, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (3a)

𝑥𝑖 − 𝑥𝑖+1 = ℎ+𝑖 − ℎ−𝑖 , 𝑖 ∈ 𝐼ℎ,
(3b)

𝑥𝑖 − 𝑥𝑖+𝑛 = 𝑣+𝑖 − 𝑣−𝑖 , 𝑖 ∈ 𝐼𝑣, (3c)

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 ∈ 𝐼, (3d)

𝑧+𝜃,𝑘, 𝑧
−
𝜃,𝑘 ≥ 0, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (3e)

ℎ+𝑖 , ℎ
−
𝑖 ≥ 0, 𝑖 ∈ 𝐼ℎ, (3f)

𝑣+𝑖 , 𝑣
−
𝑖 ≥ 0, 𝑖 ∈ 𝐼𝑣. (3g)

The main drawback of formulation LTV𝓁1
is the large number of

variables and constraints that it involves for usual size images. For
instance, for a 1024 × 1024 image with 8 different projections, LTV𝓁1
has 3,206,471 variables and 2,116,607 constraints. These dimensions
involve large memory requirements to load the data instances as well as
large computing times to solve them, which are unrealistic in practice.
This motivates the use of some alternative solution method in which
the burden due to the large dimension of the formulation is alleviated.

3.1. Complementary slackness conditions for LTV𝓁1

Below we analyse the complementary slackness conditions for LTV𝓁1
and its associated dual problem, which will be exploited to develop an
elimination technique leading to a (reduced) 𝓁1-reconstruction model
of lower dimension.

Consider the dual variables
(

𝜏𝜃,𝑘
)

𝜃∈𝛩,𝑘∈𝐾 ,
(

𝛼𝑖
)

𝑖∈𝐼ℎ ,
(

𝛿𝑖
)

𝑖∈𝐼𝑣 , and
(

𝜎𝑖
)

𝑖∈𝐼 associated with constraints (3a), (3b), (3c) and (3d), respec-
tively. Let also 𝐴𝜃,𝑘,𝑖 ∈ R denote the 𝑖th component of vector 𝐴𝜃,𝑘. The
linear dual of LTV𝓁1

is:

(D-LTV𝓁1
) max

∑

𝜃∈𝛩

∑

𝑘∈𝐾
𝑏𝜃,𝑘 ⋅ 𝜏𝜃,𝑘 −

∑

𝑖∈𝐼
𝜎𝑖 (4a)

s.t.
∑

𝜃∈𝛩

∑

𝑘∈𝐾
𝜏𝜃,𝑘𝐴𝜃,𝑘,𝑖 − 𝛼𝑖−1+ 𝛼𝑖 − 𝛿𝑖−𝑛 + 𝛿𝑖 − 𝜎𝑖 ≤ 0, 𝑖 ∈ 𝐼,

(4b)

− 𝜏𝜃,𝑘 ≤ 𝜇
2
, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (4c)

𝜏𝜃,𝑘 ≤ 𝜇
2
, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (4d)

𝛼𝑖 ≤ 1, 𝑖 ∈ 𝐼ℎ, (4e)

− 𝛼𝑖 ≤ 1, 𝑖 ∈ 𝐼ℎ, (4f)

𝛿𝑖 ≤ 1, 𝑖 ∈ 𝐼𝑣, (4g)

− 𝛿𝑖 ≤ 1, 𝑖 ∈ 𝐼𝑣, (4h)
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where slightly abusing notation we assume that variables are set to zero
for the indices they are not defined. Observe that constraints (4c)–(4h),
define in fact a range of values for the dual variables 𝜏, 𝛼 and 𝛿. Indeed,

|𝜏𝜃,𝑘| ≤
𝜇
2
, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (5a)

|𝛼𝑖| ≤ 1, 𝑖 ∈ 𝐼ℎ, (5b)

|𝛿𝑖| ≤ 1, 𝑖 ∈ 𝐼𝑣. (5c)

Once the dual problem has been formulated, the complementary
lackness conditions can be derived. Recall that these conditions char-
cterize optimal solutions to pairs of primal/dual linear problems, see
.g. Vanderbei (2007). When applied to the primal/dual pair LTV𝓁1

and
-LTV𝓁1

the conditions that relate the slacks of primal constraints with
he associated dual variables are:
+
𝜃,𝑘(

𝜇
2
+ 𝜏𝜃,𝑘) = 0, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (6a)

𝑧−𝜃,𝑘(
𝜇
2
− 𝜏𝜃,𝑘) = 0, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (6b)

ℎ+𝑖 (1 − 𝛼𝑖) = 0, 𝑖 ∈ 𝐼ℎ, (6c)

ℎ−𝑖 (1 + 𝛼𝑖) = 0, 𝑖 ∈ 𝐼ℎ, (6d)

𝑣+𝑖 (1 − 𝛿𝑖) = 0, 𝑖 ∈ 𝐼𝑣, (6e)

𝑣−𝑖 (1 + 𝛿𝑖) = 0, 𝑖 ∈ 𝐼𝑣. (6f)

Likewise, the conditions that relate the slacks of the dual constraints
with the corresponding primal variables are:

𝜏𝜃,𝑘(𝐴𝜃,𝑘𝑥 − 𝑧+𝜃,𝑘 + 𝑧−𝜃,𝑘 − 𝑏𝜃,𝑘) = 0, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾, (7a)

𝛼𝑖(𝑥𝑖 − 𝑥𝑖+1 − ℎ+𝑖 + ℎ−𝑖 ) = 0, 𝑖 ∈ 𝐼ℎ, (7b)

𝛿𝑖(𝑥𝑖 − 𝑥𝑖+𝑛 − 𝑣+𝑖 + 𝑣−𝑖 ) = 0, 𝑖 ∈ 𝐼𝑣. (7c)

4. A solution algorithm for LTV𝓵𝟏

The high dimension of the resulting optimization problem associ-
ated with LTV𝓁1

for the instances that arise in practice makes it to
be rather time-consuming solving with off-the-shelf solvers. For this
reason, in this section we develop an ad-hoc efficient solution method
for dealing with the obtained large-scale linear programming problem.
First, we present an elimination test based on the complementary
slackness conditions of Section 3.1, which allows removing unnecessary
variables and constraints, leading to a lower dimension reconstruction
model.

4.1. The reduced 𝓁1 reconstruction model

The complementary slackness conditions of Section 3.1 can be used
to fix the values of some of the primal variables, so tighter expressions
of some constraints of the primal problem LTV𝓁1

are obtained. We
will focus on variables ℎ+, ℎ−, 𝑣+ and 𝑣−, which contain information
about the image gradient, and the complementary slackness conditions
(6c)–(6f) relating these variables with the dual variables 𝛼 and 𝛿
associated with the primal constraints (3b)–(3c) where they appear. In
particular, for a given index 𝑖 ∈ 𝐼ℎ, the corresponding primal constraint
(3b) together with the complementary slackness conditions (6c)–(6d)
indicate that:

𝑥𝑖 − 𝑥𝑖+1 = ℎ+𝑖 − ℎ−𝑖 , 𝑖 ∈ 𝐼ℎ,

ℎ+𝑖 (1 − 𝛼𝑖) = 0, 𝑖 ∈ 𝐼ℎ,

ℎ−𝑖 (1 + 𝛼𝑖) = 0, 𝑖 ∈ 𝐼ℎ.

Therefore, in any optimal solution to the pair LTV𝓁1
/D-LTV𝓁1

, when
both |1 − 𝛼𝑖| > 0 and |1 + 𝛼𝑖| > 0, then ℎ+𝑖 = −ℎ−𝑖 = 0, so the constraint
(3b) reduces to 𝑥𝑖 = 𝑥𝑖+1. Similarly, from the primal constraint (3c) and
5

the complementary slackness conditions (6e)–(6f) we may conclude t
that in any optimal solution to the pair LTV𝓁1
/D-LTV𝓁1

, when both
|1 − 𝛿𝑖| > 0 and |1 + 𝛿𝑖| > 0, then 𝑣+𝑖 = −𝑣−𝑖 = 0, so the constraint
(3c) reduces to 𝑥𝑖 = 𝑥𝑖+𝑛.

The above implications can be exploited to derive an elimination
test based on any given vector of dual variables, 𝛼 and 𝛿, using a
threshold value 𝜀 ∈ (0, 1) for considering as ‘‘non-zero’’ terms only
those with an absolute value greater than the considered 𝜖. The higher
the value of 𝜖, the higher precision is obtained since less variables ℎ+,
ℎ−, 𝑣+ and 𝑣− are removed from LTV𝓁1

formulation. Let us define 𝐻𝜀
and 𝑉𝜀 as the index sets of the pixels that verify that |1 − 𝛼𝑖| > 𝜀 and
|1 + 𝛼𝑖| > 𝜀, as well as |1 − 𝛿𝑖| > 𝜀 and |1 + 𝛿𝑖| > 𝜀, respectively. That
is, 𝐻𝜀 = {𝑖 ∈ 𝐼ℎ ∶ |1 − 𝛼𝑖| > 𝜀 and |1 + 𝛼𝑖| > 𝜀} and 𝑉𝜀 = {𝑖 ∈ 𝐼𝑣 ∶
|1 − 𝛿𝑖| > 𝜀 and |1 + 𝛿𝑖| > 𝜀}. Then, we fix ℎ+𝑖 = ℎ−𝑖 = 0 for all 𝑖 ∈ 𝐻𝜀
and update constraints (3b) accordingly. Similarly, we fix 𝑣+𝑖 = 𝑣−𝑖 = 0
for all 𝑖 ∈ 𝑉𝜀 and update constraints (3c) accordingly. After the above
elimination, we obtain a reduced formulation of LTV𝓁1

given by:

(R-LTV𝓁1
) min 𝜇

2
∑

𝜃∈𝛩

∑

𝑘∈𝐾
(𝑧+𝜃,𝑘 + 𝑧−𝜃,𝑘) +

∑

𝑖∈𝐼𝑣
(ℎ+𝑖 + ℎ−𝑖 + 𝑣+𝑖 + 𝑣−𝑖 )

+
∑

𝑖∈𝐼ℎ⧵𝐼𝑣
(ℎ+𝑖 + ℎ−𝑖 ) (8a)

s.t. 𝐴𝜃,𝑘𝑥 − 𝑏𝜃,𝑘 = 𝑧+𝜃,𝑘 − 𝑧−𝜃,𝑘, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾,

(8b)

𝑥𝑖 = 𝑥𝑖+1, 𝑖 ∈ 𝐻𝜀,
(8c)

𝑥𝑖 − 𝑥𝑖+1 = ℎ+𝑖 − ℎ−𝑖 , 𝑖 ∈ 𝐼𝐻 ⧵𝐻𝜀,
(8d)

𝑥𝑖 = 𝑥𝑖+𝑛, 𝑖 ∈ 𝑉𝜀,
(8e)

𝑥𝑖 − 𝑥𝑖+𝑛 = 𝑣+𝑖 − 𝑣−𝑖 , 𝑖 ∈ 𝐼𝑣 ⧵ 𝑉𝜀,
(8f)

𝑧+𝜃,𝑘, 𝑧
−
𝜃,𝑘 ≥ 0, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾,

(8g)

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 ∈ 𝐼,
(8h)

ℎ+𝑖 , ℎ
−
𝑖 ≥ 0, 𝑖 ∈ 𝐼ℎ ⧵𝐻𝜀,

(8i)

𝑣+𝑖 , 𝑣
−
𝑖 ≥ 0, 𝑖 ∈ 𝐼𝑣 ⧵ 𝑉𝜀.

(8j)

4.2. The solution algorithm

In this subsection, we present a solution algorithm for 𝐿𝑇𝑉𝓁1 . It is
based on the solution of the reduced formulation R-LTV𝓁1

, which, in
turn, is obtained from the application of the elimination test derived
from the complementary slackness conditions. The overall solution
method is presented in Algorithm 1.

Indeed Algorithm 1 can be highly sensitive to the choice of the
dual vector 𝜆 = (𝜏, 𝛼, 𝛿, 𝜎). In particular, 𝛼 and 𝛿 dictate the outcome
of the elimination test, which, in its turn, determines the reduced
formulation R-LTV𝓁1

that is actually solved in Step 3. On the one
hand, using values of 𝛼 and 𝛿 that are not close enough to the optimal
ones can be useless, as it may produce a reduced model R-LTV𝓁1

that
oes not approximate accurately the original formulation LTV𝓁1

. On
he other hand, finding an optimal dual vector can be too much time
onsuming. Preliminary computational experiments indicate that a very
ood tradeoff can be achieved by using a near-optimal dual vector
btained from an approximate solution to the Lagrangian dual problem
hat we develop in the next section.
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Algorithm 1: 𝓁1-norm reconstruction algorithm.

1 INPUT: Sinogram 𝑏 provided by electron microscopes,
projection matrix 𝐴.

2 Step 1: Obtain a suitable dual vector 𝜆 = (𝜏, 𝛼, 𝛿, 𝜎).
3 Step 2: Set an accuracy 𝜀 ∈ (0, 1) for the elimination test.
4 for 𝑖 = 1 ∶ 𝑛2 do
5 if |1 − 𝛼𝑖| > 𝜀 and |1 + 𝛼𝑖| > 𝜀 then
6 Replace constraint 𝑥𝑖 − 𝑥𝑖+1 = ℎ+𝑖 − ℎ−𝑖 by 𝑥𝑖 = 𝑥𝑖+1.

7 if |1 − 𝛿𝑖| > 𝜀 and |1 + 𝛿𝑖| > 𝜀 then
8 Replace constraint 𝑥𝑖 − 𝑥𝑖+𝑛 = ℎ+𝑖 − ℎ−𝑖 by 𝑥𝑖 = 𝑥𝑖+𝑛.

9 Step 3: Solve the reduced reconstruction formulation R-LTV𝓁1
obtained in Step 2.

10 OUTPUT: Reconstruction 𝑥 of the particle put into the
microscope.

5. Lagrangian relaxation for LTV𝓵𝟏

Consider the Lagrangian relaxation of LTV𝓁1
resulting from re-

oving constraints (3a)–(3c) and incorporating them to the objective
unction weighted with suitable multipliers. Note that the constraints
hat we relax are the ones involving the linearizing variables 𝑧+, 𝑧−,
+, ℎ−, 𝑣+ and 𝑣−. Let 𝜆 = (𝜏, 𝛼, 𝛿) ∈ R𝑝𝑛̄+|𝐼ℎ|+|𝐼𝑣| denote the vector of
agrangian multipliers associated with the relaxed constraints, where
, 𝛼 and 𝛿 correspond to constraints (3a), (3b), and (3c), respectively.
bserve that these multipliers are not restricted in sign, because they
re associated with equality constraints. The Lagrangian function is:

LTV-RL𝜆) 𝑍(𝜆) = min 𝐿(𝜆, 𝐲)
𝐲 ≥ 0,

𝑥 ≤ 1,

here 𝐲 = (𝑥, 𝑧+, 𝑧−, ℎ+, ℎ−, 𝑣+, 𝑣−) and 𝐿(𝜆, 𝐲) is given by:

𝐿(𝜆, 𝐲) =
∑

𝜃∈𝛩

∑

𝑘∈𝐾

(𝜇
2
(𝑧+𝜃,𝑘 + 𝑧−𝜃,𝑘) + 𝜏𝜃,𝑘(𝐴𝜃,𝑘𝑥 − 𝑏𝜃,𝑘 − 𝑧+𝜃,𝑘 + 𝑧−𝜃,𝑘)

)

+
∑

𝑖∈𝐼𝑣

(

(ℎ+𝑖 + ℎ−𝑖 + 𝑣+𝑖 + 𝑣−𝑖 ) + 𝛼𝑖(𝑥𝑖 − 𝑥𝑖+1 − ℎ+𝑖 + ℎ−𝑖 )

+ 𝛿𝑖(𝑥𝑖 − 𝑥𝑖+𝑛 − 𝑣+𝑖 + 𝑣−𝑖 )
)

+
∑

𝑖∈𝐼ℎ⧵𝐼𝑣

(

(ℎ+𝑖 + ℎ−𝑖 ) + 𝛼𝑖(𝑥𝑖 − 𝑥𝑖+1 − ℎ+𝑖 + ℎ−𝑖 )
)

,

which, after regrouping terms, can be rewritten as:

𝐿(𝜆, 𝐲) =
∑

𝜃∈𝛩

∑

𝑘∈𝐾

(

𝑧+𝜃,𝑘(
𝜇
2
− 𝜏𝜃,𝑘) + 𝑧−𝜃,𝑘(

𝜇
2
+ 𝜏𝜃,𝑘)

)

+
∑

𝑖∈𝐼𝑣

(

𝑥𝑖(𝛼𝑖 + 𝛿𝑖 +
∑

𝜃∈𝛩

∑

𝑘∈𝐾
𝜏𝜃,𝑘𝐴𝜃,𝑘,𝑖)

+ 𝑥𝑖+1(−𝛼𝑖) + 𝑥𝑖+𝑛(−𝛿𝑖) + ℎ+𝑖 (1 − 𝛼𝑖) + ℎ−𝑖 (1 + 𝛼𝑖)

+ 𝑣+𝑖 (1 − 𝛿𝑖) + 𝑣−𝑖 (1 + 𝛿𝑖)
)

+
∑

𝑖∈𝐼ℎ⧵𝐼𝑣

(

𝑥𝑖(𝛼𝑖 +
∑

𝜃∈𝛩

∑

𝑘∈𝐾
𝜏𝜃,𝑘𝐴𝜃,𝑘,𝑖) + 𝑥𝑖+1(−𝛼𝑖)

+ ℎ+𝑖 (1 − 𝛼𝑖) + ℎ−𝑖 (1 + 𝛼𝑖)
)

, (9)

here 𝐴𝜃,𝑘,𝑖 corresponds to the proportion of pixel 𝑖 went through
lectron beam 𝑘 in projection 𝜃. The Lagrangian Dual is therefore:

LTV-DL) max 𝑍(𝜆)

𝜆 ∈ R𝑝𝑛̄+|𝐼ℎ|+|𝐼𝑣|.

Since LTV𝓁1
is a linear programming problem, it is well-known (see,

or instance, Bertsimas & Tsitsiklis, 1997, for further details) that
he optimal value of the Lagrangian dual LTV-DL coincides with the
6

ptimal value of the linear programming dual of LTV𝓁1
, which, in its
urn, coincides with the optimal value of LTV𝓁1
, and any optimal vector

f Lagrangian multipliers will be optimal for the linear dual problem
-LTV𝓁1

as well.
We consider two alternative methods for solving the Lagrangian

ual LTV-DL: an ad hoc algorithm based on subgradient optimiza-
ion (Bertsekas, 1999; Shor, 1985), as well as a volume algorithm (Bara-
ona & Anbil, 2000). For the sake of completeness we first describe
basic subgradient method and then the volume algorithm. Subgra-

ient optimization is an iterative technique widely used for solving
agrangian duals. The algorithm starts by choosing an initial mul-
ipliers vector 𝜆0 = (𝜏0, 𝛼0, 𝛿0) ∈ R𝑝𝑛̄+|𝐼ℎ|+|𝐼𝑣|. At iteration 𝑠, the
agrangian function associated with the current multipliers vector is
olved. That is, a vector 𝐲𝑠 = (𝑥𝑠, 𝑧𝑠+, 𝑧𝑠−, ℎ𝑠+, ℎ𝑠−, 𝑣𝑠+, 𝑣𝑠−) is identified
uch that 𝑍(𝜆𝑠) = 𝐿(𝜆𝑠, 𝐲𝑠). Then, the Lagrangian multipliers are
pdated according to:
𝑠+1 ∶= 𝜆𝑠 + 𝜈𝑠∇𝑍(𝜆𝑠), (10)

here ∇𝑍(𝜆𝑠) is a subgradient of the objective function of problem
TV-RL𝜆, i.e.,

𝜏𝜃,𝑘𝑍(𝜆𝑠) = 𝐴𝜃,𝑘𝑥
𝑠 − 𝑏𝜃,𝑘 − 𝑧𝑠+𝜃,𝑘 + 𝑧𝑠−𝜃,𝑘, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾,

∇𝛼𝑖𝑍(𝜆𝑠) = 𝑥𝑠𝑖 − 𝑥𝑠𝑖+1 − ℎ𝑠+𝑖 + ℎ𝑠−𝑖 , 𝑖 ∈ 𝐼ℎ,

∇𝛿𝑖𝑍(𝜆𝑠) = 𝑥𝑠𝑖 − 𝑥𝑠𝑖+𝑛 − 𝑣𝑠+𝑖 + 𝑣𝑠−𝑖 , 𝑖 ∈ 𝐼𝑣,

nd 𝜈𝑠 is the step size along the normalized subgradient direction. A
opular choice for 𝜈𝑠 is the formula given in Held et al. (1974):

𝑠 =
𝜌𝑠(𝑍𝑈𝐵 −𝑍(𝜆𝑠))

‖∇𝑍(𝜆𝑠)‖2
, (11)

here 𝑍𝑈𝐵 is the optimal objective value of the original problem LTV𝓁1
or an upper bound of this value, and the parameter 𝜌𝑠 must take values
between 0 and 2 and can be updated according to different rules. The
procedure is repeated until a stopping criterion is met, which usually
includes a limit for the maximum number of iterations as well as some
sort of convergence test, i.e. the variation in the value of the Lagrangian
function is beneath a prefixed threshold for a number of consecutive
iterations. Algorithm 2 gives a template of a subgradient optimization
algorithm applied to D-LTV𝓁1

.

Algorithm 2: Template of subgradient optimization adapted to
D-LTV𝓁1

.

1 INPUT: 𝜆1 = (𝜏1, 𝛼1, 𝛿1), 𝑍𝑈𝐵 , 𝜌1 ∈ [0, 2],
Termination-criterion, end:=false, 𝑠 ∶= 1.

2 while (not end) do
3 Solve 𝑍(𝜆𝑠) and identify 𝐲𝑠 = (𝑥𝑠, 𝑧𝑠+, 𝑧𝑠−, ℎ𝑠+, ℎ𝑠−, 𝑣𝑠+, 𝑣𝑠−)

such that 𝑍(𝜆𝑠) = 𝐿(𝜆𝑠, 𝐲𝑠).
4 Update the multipliers: 𝜆𝑠+1 ∶= 𝜆𝑠 + 𝜈𝑠∇𝑍(𝜆𝑠)
5 if (Termination-criterion) then
6 end:=true
7 𝑠 ∶= 𝑠 + 1.
8 Output: Near-optimal multipliers of problem D-LTV𝓁1

, 𝜆𝑠.

It is well-known that one of the weaknesses of subgradient optimiza-
tion can be its slow convergence, which, to a large extent, is due to the
fact that it is not guaranteed that the value of the Lagrangian function
improves in two consecutive iterations, i.e. it is not guaranteed that
𝑍(𝜆𝑠+1) > 𝑍(𝜆𝑠). The volume algorithm was proposed in Barahona
and Anbil (2000) as an alternative to subgradient optimization that
guarantees that such condition holds. This strategy provides a higher
speed of convergence in fewer iterations, which is a very attractive
characteristic of any iterative method.

In the classical subgradient optimization algorithm applied to D-
LTV𝓁1

, the movement direction at each iteration is the subgradient
∇𝑍(𝜆𝑠), whose components are the slacks of the relaxed constraints
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(3a)–(3c), evaluated at the points 𝐲𝐬 = (𝑥𝑠, 𝑧𝑠+, 𝑧𝑠−, ℎ𝑠+, ℎ𝑠−, 𝑣𝑠+, 𝑣𝑠−)
uch that 𝑍(𝜆𝑠) = 𝐿(𝜆𝑠, 𝐲𝑠); then the step length is computed according
o (11). Instead, in the volume algorithm a series of inner iterations
re carried out within each major iteration of subgradient optimization
n order to identify a move direction ∇𝑍 and associated step length
𝜈 such that 𝑍(𝜆𝑠 + 𝜈∇𝑍) > 𝑍(𝜆𝑠). When such a direction and step
length are found, then the multipliers vector 𝜆𝑠 is updated to 𝜆𝑠 +
𝜈∇𝑍 and the regular iterative procedure continues. Quite similarly to
ubgradient optimization, the components of ∇𝑍 are the slacks of the

relaxed constraints (3a)–(3c), only that evaluated at a tentative point
𝐲̄ = (𝑥̄, 𝑧̄+, 𝑧̄−, ℎ̄+, ℎ̄−, 𝑣̄+, 𝑣̄−) defined as a convex combination of the
current point 𝐲𝑠 and the tentative point computed in the previous inner
iteration. That is, 𝐲 ∶= 𝜋𝐲𝐬 + (1 − 𝜋)𝐲, with 0 ≤ 𝜋 ≤ 1. Therefore,
he components of the movement direction ∇𝑍 associated with a given

tentative point 𝐲 are:

∇𝜏𝜃,𝑘𝑍 = 𝐴𝜃,𝑘𝑥̄ − 𝑏𝜃,𝑘 − 𝑧̄+𝜃,𝑘 + 𝑧̄−𝜃,𝑘, 𝜃 ∈ 𝛩, 𝑘 ∈ 𝐾,

∇𝛼𝑖𝑍 = 𝑥̄𝑖 − 𝑥̄𝑖+1 − ℎ̄+𝑖 + ℎ̄−𝑖 , 𝑖 ∈ 𝐼ℎ,

∇𝛿𝑖𝑍 = 𝑥̄𝑖 − 𝑥̄𝑖+𝑛 − 𝑣̄+𝑖 + 𝑣̄−𝑖 , 𝑖 ∈ 𝐼𝑣.

nce ∇𝑍 has been calculated, its associated step length 𝜈 is computed
according to (11) using ‖∇𝑍‖

2 in the denominator. Algorithm 3 gives
a template of a volume algorithm applied to D-LTV𝓁1

. Note that the
first iteration of Algorithm 3 is just a subgradient optimization iteration
because at that stage no tentative point has yet been defined.

Algorithm 3: Volume algorithm applied to D-LTV𝓁1
.

1 INPUT: 𝜆1 = (𝜏1, 𝛼1, 𝛿1), 𝑍𝑈𝐵 , 𝜌1 ∈ [0, 2],
Termination-criterion, end:=false, 𝑠 ∶= 1.

2 while (not end) do
3 Solve 𝑍(𝜆𝑠) and identify 𝐲𝑠 = (𝑥𝑠, 𝑧𝑠+, 𝑧𝑠−, ℎ𝑠+, ℎ𝑠−, 𝑣𝑠+, 𝑣𝑠−)

such that 𝑍(𝜆𝑠) = 𝐿(𝜆𝑠, 𝐲𝑠).
4 𝜆 ∶= 𝜆𝑠 + 𝜈𝑠∇𝑍(𝜆𝑠)
5 if (s = 1) then
6 𝐲 ∶= 𝐲𝐬

7 else
8 while (𝑍(𝜆) ≤ 𝑍(𝜆𝑠−1)) do
9 𝐲 ∶= 𝜋𝐲𝐬 + (1 − 𝜋)𝐲.
10 Compute ∇𝑍.
11 Compute 𝜈 according to (11) using ‖∇𝑍‖

2 in the
denominator. 𝜆 ∶= 𝜆𝑠 + 𝜈∇𝑍

12 Update the multipliers: 𝜆𝑠+1 ∶= 𝜆
13 if (some termination criterion is met) then
14 end:=true
15 𝑠 ∶= 𝑠 + 1.
16 Output: Near-optimal multipliers of problem D-LTV𝓁1

, 𝜆𝑠.

5.1. Enhancing the subgradient and volume algorithms

As we will see in Section 6 where we summarize the numerical
results from our computational experiments, it is possible to improve
considerably the performance of the subgradient and volume algo-
rithms by exploiting in several ways properties derived from linear
programming and the complementary slackness conditions discussed in
Section 3, as we explain below. The importance of these improvements
can be appreciated in Tables S1–S3 where we can observe that for
medium-size and large instances our procedure is effective only if these
improvements are used to assist in finding the right multipliers.

1. An important aspect refers to how to select the optimal solution
𝐲𝐬 = (ℎ𝑠+, ℎ𝑠−, 𝑣𝑠+, 𝑣𝑠−) at each iteration of Algorithms 2 and
3. Note that, at a given iteration, 𝑍(𝜆𝑠) may have alternative
optimal solutions, and a suitable choice of the selected solution
7

may affect considerably the performance of the algorithms. In
particular, looking at the expression of the Lagrangian function
(9) it can be observed that for 𝑖 ∈ 𝐼ℎ, when the coefficients
1 − 𝛼𝑖 = 0, then ℎ𝑠𝑖

+ can take any value. A similar observation
applies to variables ℎ𝑠𝑖

− when their coefficients 1+𝛼𝑖 = 0, 𝑖 ∈ 𝐼ℎ,
as well as to variables 𝑣+𝑖 and 𝑣−𝑖 , 𝑖 ∈ 𝐼𝑣, when their respective
coefficients 1 − 𝛿𝑖 and 1 + 𝛿𝑖 take a value of zero. In such cases,
the complementary slackness conditions (7b) and (7c) can be
used again to select suitable values for the involved variables.
Specifically, we apply the following rules:

1 − 𝛼𝑖 = 0 ⇒ ℎ+𝑖 = 𝑥𝑖 − 𝑥𝑖+1; ℎ−𝑖 = 0, 𝑖 ∈ 𝐼ℎ,

1 + 𝛼𝑖 = 0 ⇒ ℎ+𝑖 = 0; ℎ−𝑖 = −(𝑥𝑖 − 𝑥𝑖+1) 𝑖 ∈ 𝐼ℎ,

1 − 𝛿𝑖 = 0 ⇒ 𝑣+𝑖 = 𝑥𝑖 − 𝑥𝑖+𝑛; 𝑣−𝑖 = 0 𝑖 ∈ 𝐼𝑣,

1 + 𝛿𝑖 = 0 ⇒ 𝑣+𝑖 = 0; 𝑣−𝑖 = −(𝑥𝑖 − 𝑥𝑖+𝑛) 𝑖 ∈ 𝐼𝑣.

This modification enhances the feasibility with respect to the
original problem of solution 𝐲𝐬 = (ℎ𝑠+, ℎ𝑠−, 𝑣𝑠+, 𝑣𝑠−).

2. Another enhancement of Algorithms 2 and 3 refers to setting
a constrained domain for the Lagrangian dual multipliers 𝜆 ∈
R𝑝𝑛̄+|𝐼ℎ|+|𝐼𝑣|. We can do this by taking into account the dual
constraints (5a)–(5c) at each iteration of the volume algorithm,
so the values of the multipliers are projected as follows:

𝜏𝑠+1 =

{

𝜏𝑠 + 𝜈𝑠∇𝜏𝑍(𝜆𝑠), if |𝜏𝑠 + 𝜈𝑠∇𝜏𝑍(𝜆𝑠)| < 𝜇
2 ,

𝜇
2 , otherwise,

(12a)

𝛼𝑠+1 =

{

𝛼𝑠 + 𝜈𝑠∇𝛼𝑍(𝜆𝑠), if |𝛼𝑠 + 𝜈𝑠∇𝛼𝑍(𝜆𝑠)| < 1,
1, otherwise,

(12b)

𝛿𝑠+1 =

{

𝛿𝑠 + 𝜈𝑠∇𝛿𝑍(𝜆𝑠), if |𝛿𝑠 + 𝜈𝑠∇𝛿𝑍(𝜆𝑠)| < 1,
1, otherwise.

(12c)

3. Finally, the empirical performance of Algorithms 2 and 3 can be
very sensitive to the initial choice of the Lagrange multipliers.
Choosing them equal to zero may require a large number of
iterations to obtain a tight lower bound of LTV𝓁1

. In order
to obtain a better choice of the initial multipliers, we first
solve problem LTV𝓁1

for a smaller-size instance obtained from
a courser version of the original image. That is, we use the same
original image but coded with a smaller number of pixels. For
instance, if the original image size is 1024 × 1024 pixels, then it
is resized to an image with 256 × 256 pixels. This reduction in
the dimension allows us to optimally solve LTV𝓁1

for the resized
image, and to obtain optimal values for the dual variables of
the small dimension instance in a short computing time. Then,
an estimation of a dual vector for the original size instance
is calculated by extrapolating the optimal dual solution of the
resized instance. This estimation is used as the initial vector
of Lagrangian multipliers in both algorithms. Initializing the
Lagrangian multipliers according to this procedure allows us to
solve D-LTV𝓁1

in considerably fewer iterations than with any
naive initialization choice.

As we will see, incorporating the above enhancements to Algorithms
and 3 improves remarkably their performance and produces a good

stimation of the optimal values of the dual variables 𝛼 and 𝛿 of D-
LTV𝓁1

. In fact, in order to obtain a good approximation of the optimal
dual values it is not necessary to run these algorithms until their conver-
gence and it is enough to do a fixed number of iterations. Preliminary
computational experiments confirm the effectiveness of this alternative,
and show that it does not affect noticeably the quality of the results of
the overall process.
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Table 1
Reconstruction errors without/with the improvements of Section 5.1 for 512 × 512 images.
Phantom 𝜇 TVM𝑅𝑂𝐹 LTV𝓁1

R-LTV𝓁1
(𝜀 = 0.9375)

Error TVM𝑅𝑂𝐹 Error LTV𝓁1
Error using Subgradient Error using Volume

Unimproved Improved Unimproved Improved

Catalyst 20◦ 27 2.9506 0.0026 35.0342 1.0452 155.7231 0.6765
210 2.4749 0.0759 55.4694 0.1300 40.4247 0.1278

Circle 20◦ 24 10.1022 0.0026 29.6402 1.4609 214.6287 1.5052
28 8.5764 0.0102 25.8016 0.5927 33.0813 0.4105

Shepp–Logan 20◦ 27 38.7823 33.9012 43.3303 34.5340 61.1401 34.0633
211 42.0587 33.5665 66.9059 33.6400 38.0184 34.0079

Catalyst 10◦ 21 8.5064 0.0013 156.7208 0.0014 155.4036 0.1159
29 0.2928 0.0875 26.5637 0.7744 23.8076 0.8510

Circle 10◦ 26 1.3590 0.0012 12.4856 0.0012 51.4175 0.0012
210 0.2667 0.0065 27.1065 0.1218 4.0835 0.0068

Shepp–Logan 10◦ 23 10.8441 0.0024 25.0873 0.1051 94.7652 0.1044
210 8.9705 0.8287 46.3489 0.9723 8.3319 1.6694
𝜌
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Fig. 3. 2D phantoms used to apply the proposed model.

. Computational experiments

In this section, we compare the performance of the most usual
econstruction model, TVM𝑅𝑂𝐹 with 𝓁2-norm solved using TVAL3 al-
orithm, with that of the TV𝓁1

model proposed in this paper, solved
ith the methodology we have developed. 2D images of 512 × 512
nd 1024 × 1024 pixels sizes with known features (intensities of the
ixels, sizes and shapes of the particles or images with edges) have
een used, such as Catalyst (López-Haro et al., 2018), Circle (Durst
t al., 2014; López-Haro, Dubau, et al., 2014), and the well-known
hepp–Logan (Shepp & Logan, 1974; Tovey et al., 2019), see Fig. 3. The
hepp–Logan phantom is a standard test image created by Larry Shepp
nd Benjamin F. Logan, which serves as the model of a human head
n the development and testing of image reconstruction algorithms.
he Catalyst and Circle phantoms have been used to simulate square
nd circular shaped particles, respectively, because most of the objects
tudied in ET have such structures. We also analyse the results for a
D particle (López-Haro et al., 2018) and for a real experiment. These
ast two objects are used to test the effectiveness of the models for
econstructing thin layers covering a given object. We show that the
mages obtained with the reconstructions produced by our 𝓁1 model
re of better quality than those obtained from the 𝓁2 model. Moreover,
t should be highlighted that only 8 and 16 projections have been
onsidered, tilted from −70◦ to 70◦. Furthermore, we show that the
ffectiveness of the procedure proposed in Algorithm 1, considering
he values for dual variables obtained from Algorithm 2 and 3 with
he improvements described in Section 5.1, substantially reduces the
omputing time of the original TV𝓁1

, at the expense of obtaining only
lightly less accurate reconstructions.

For the implementation of the TVAL3 routine, used in the solution of
VM𝑅𝑂𝐹 , we have employed the ASTRA tomography MATLAB R2018a
oolbox (http://www.astra-toolbox.com/index.html). LTV𝓁1

has also
een implemented in MATLAB R2018a thanks to the API that links
plex and MATLAB, and solved using the Barrier algorithm. In all the

mplementations of Algorithms 2 and 3, the initial value of parameter
8

o

was fixed to 2. All the experiments have been performed on an Intel
ore I7 8700 workstation, 64 Gb RAM, VGA NVIDIA RTX 2070.

Two projection sets have been chosen for each analysed image, both
anging from −70◦ to 70◦. In the first one a projection is recorded
very 20◦, whereas in the second one a projection is recorded every
0◦. Hence, in the reconstruction algorithms the initial data that con-
titutes the sinogram consists of a collection of 8 and 16 projections,
espectively.

For comparing the different reconstruction methods, we define the
rror associated with each method as the 𝓁2-norm of the difference at
ach pixel between the original image (𝑃 ) and the reconstructed one
ith the considered method (𝑅𝑒𝑐). Furthermore, for our experiments,

ormulation LTV𝓁1
was first solved and the computing time needed to

olve it used as the stopping criterion for TVAL3 applied to TVM𝑅𝑂𝐹 .
his allows us to compare the quality of the images obtained for both
rocedures in a fair way (using the same computing time). It is worth
entioning that, in general, TVAL3 provides a solution in less time
sing the default stopping criteria, so by extending the limit computing
ime, we give TVAL3 the opportunity of further improving such a
olution.

We start our analysis by highlighting the huge influence of the im-
rovements described in Section 5.1 in the performance of Algorithms
and 3, which is summarized in Table 1 (see Tables S1–S3 in the

upplementary Material for more details). The first two columns of
his table report the name of the reconstructed phantom and the value
f parameter 𝜇, respectively. The two values of 𝜇 reported for each
nstance are the ones that produced the best results for TVM𝑅𝑂𝐹 and
TV𝓁1

, respectively. The third and fourth columns give the errors of the
olutions produced by TVM𝑅𝑂𝐹 and LTV𝓁1

, respectively. The remaining
olumns show the errors of the solutions obtained with R-LTV𝓁1

, when
he reduction procedure of Section 4.1 was applied with 𝜀 = 0.9375.
olumns 5–6 report the results when the near-optimal dual solution
as produced by Algorithm 2 and columns 7–8 when Algorithm 3 was
sed instead. As can be seen, the quality of the images reconstructed
ith Algorithm 1 using the multipliers provided by Algorithms 2 and
without improvements are substantially worse than those obtained

sing the improvements. In particular, the errors with the improve-
ents are more than one order of magnitude smaller. For this reason,

n all the experiments that we report in the following, Algorithms 2
nd 3 are always enhanced with the improvements of Section 5.1.
urthermore, the reduced formulations obtained after applying the
limination procedure of Section 4.1 with a fixed value of 𝜀 and the
ear-optimal dual solutions produced by the enhanced Algorithms 2
nd 3 will be referred to as, R-LTV𝓁1

-2 and R-LTV𝓁1
-3, respectively.

As recommended in Li et al. (2013), for the reconstruction of the
mages shown in Fig. 3 we have tested multiple values of parameter 𝜇,
anging from 𝜇 = 20 to 𝜇 = 214, which allows to appreciate the influence
f this parameter in the considered models. The smaller the 𝜇 value, the

http://www.astra-toolbox.com/index.html
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Fig. 4. Catalyst reconstruction with 1024 × 1024 pixels.
Fig. 5. Enlargements of the areas marked by the red squares.
smoother the reconstruction is provided. For these experiments, after
preliminary testing, 𝜀 = 0.625 (10/16) and 𝜀 = 0.9375 (15/16) were
chosen for the elimination test of Section 4.1 with projections every
20◦. These values were chosen to illustrate how values of 𝜀 close to 1
affect the trade-off between accuracy and computing time.

The first reconstructed phantom simulates a catalyst with a square
shape that contains round particles of different sizes and intensities.
With this phantom we aim at illustrating how straight shapes and
small particles are recovered with the different reconstruction mod-
els (López-Haro et al., 2018). Fig. 4 shows the results obtained with
the 1024 × 1024 catalyst with projections ranged from −70◦ to 70◦

recorded every 20◦ using the following two values of 𝜇: the one corre-
sponding to the best reconstruction for TVM𝑅𝑂𝐹 (𝜇TVM𝑅𝑂𝐹

); and the one
corresponding to the best reconstruction obtained with LTV𝓁1

(𝜇LTV𝓁1
).

Table S6 in the Supplementary material gives the detailed results of
TVM𝑅𝑂𝐹 , LTV𝓁1

, R-LTV𝓁1
-2 and R-LTV𝓁1

-3 for the different values of 𝜇
with this instance. In Fig. 4 the computing time of R-LTV𝓁1

-3 is divided
into two terms: the time needed to solve the Lagrangian relaxation and
the time to solve R-LTV𝓁1

-3. We can see that the catalyst reconstruction
obtained with LTV𝓁1

is of higher quality than that obtained with
TVM𝑅𝑂𝐹 (more than 99% of improvement in both cases). Moreover,
our procedure produces a good reconstruction in considerably less
computing time (improvement of about 80% and 40% with 𝜀 = 0.625
and 𝜀 = 0.9375, respectively). Fig. 5 shows enlargements of a specific
area in the reconstructions provided by the different models using
𝜇 = 22. It can be observed that the solution obtained using TVM
9

𝑅𝑂𝐹
contains a lot of pixels with intensities that do not correspond with
the phantom. Nevertheless, the pixel intensities of the reconstruction
using LTV𝓁1

as well as R-LTV𝓁1
-3 are closer to the pixel intensities of

the phantom.
The second phantom tested is a circular object with a thin ring.

This instance has been chosen to observe the accuracy to recover the
white ring (see Durst et al., 2014; López-Haro, Dubau, et al., 2014,
for further information about similar objects). Fig. 6 shows that LTV𝓁1
provides a more accurate white ring as compared to the reconstruction
obtained by TVM𝑅𝑂𝐹 (more than 86% of improvement in both cases)
with a considerable reduction in the running times with our procedure
(more than 83% and 70% reduction with 𝜀 = 0.625 and 𝜀 = 0.9375,
respectively). Fig. 7 shows a specific area of these reconstructions to
highlight the image quality provided by the different methods in a
visual way. The 𝜇 value was set to 23. We can observe that LTV𝓁1

recov-
ers the white ring around the grey circle more accurately, since most
pixels of the ring reconstructed using TVM𝑅𝑂𝐹 have grey intensities
instead of white intensities. Moreover, the results provided by R-LTV𝓁1

-
3 considering 𝜀 = 0.625 and 𝜀 = 0.9375 also show a good performance
for reconstructing the white ring.

The last 2D image in which TVM𝑅𝑂𝐹 and LTV𝓁1
have been com-

pared is the Shepp–Logan phantom (Shepp & Logan, 1974; Tovey et al.,
2019), see Fig. 8. This phantom is more sophisticated than catalyst and
circle due to the different particles contained in the image. Fig. 8 shows
that LTV𝓁1

outperforms TVM𝑅𝑂𝐹 with around 12% error reduction
in both cases. Moreover, this example allows to highlight the good
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Fig. 6. Reconstruction of the Circle with 1024 × 1024 pixels.

Fig. 7. Enlargements of the areas marked by the red squares.

Fig. 8. Reconstruction of the Shepp–Logan phantom with 1024 × 1024 pixels.
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Fig. 9. Enlargements of the areas marked by the red squares.
Fig. 10. Reconstruction of a 3D phantom with 512 × 512 × 512 pixels.
Fig. 11. Reconstruction of a 3D real object with 128 × 128 × 128 pixels.
performance of R-LTV𝓁1
-3, which provides very good reconstructions

in low computing times. In particular, with 𝜀 = 0.9375, R-LTV𝓁1
-3

produced reconstructions of similar quality as those of LTV𝓁1
in smaller

computing times, with a reduction of 22.44% and 44.30% with respect
to those of LTV𝓁1

for 𝜇 = 26 and 𝜇 = 28, respectively. Fig. 9 highlights
an specific area of the white thin cover of the object. These recon-
structions have been obtained using 𝜇 = 28. We can observe that the
LTV𝓁1

model achieves a more accurate image than the TVM𝑅𝑂𝐹 model,
since the white structure observed in the enlargement is recovered quite
similarly to the phantom. In addition, R-LTV𝓁1

-3 using 𝜀 = 0.625 and
𝜀 = 0.9375 has also provided an accurate reconstruction.

The 𝓁1-norm models have also been tested on a 3D phantom (López-
Haro et al., 2018). To reconstruct this kind of particles, the whole
volume is divided into different 2D slices and every slice is considered
11
independently as a 2D image. In this particular instance, a set of
512 2D reconstructions, with 512 × 512 pixels each, are obtained.
Once every slice has been recovered, some specific image processing
software is used to generate the reconstructed volume from the 512
2D reconstructions obtained using a standard assembling procedure
available at Avizo software (Avizo, 2019). Fig. 10 shows that the results
obtained with this 3D instance are similar to those obtained with the
considered 2D instances. In the reconstruction produced by TVM𝑅𝑂𝐹
the top and bottom parts of the thin coverage are not reproduced.
Instead, LTV𝓁1

produces a reconstruction of the coverage very similar
to the original phantom. As can be seen, in comparison to TVM𝑅𝑂𝐹 ,
R-LTV𝓁1

-3 yields a considerable decrease in the error of 23.76% for
𝜀 = 0.625 and 33.37% for 𝜀= 0.9375. This is accompanied with a
remarkable reduction in the computing times of 23.53% and 21.27%,
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Fig. 12. Performance of the different reconstruction models using a smaller number of projections and including noise in the catalyst phantom.
Fig. 13. Performance of the different reconstruction models using a smaller number of projections and including noise in the circle phantom.
Fig. 14. Performance of the different reconstruction models using a smaller number of projections and including noise in the Shepp–Logan phantom.
for 𝜀 = 0.625 and 𝜀= 0.9375, respectively, in each 2D slice, which
means a considerable time saving in the complete 3D-reconstruction.

We have also applied the LTV𝓁1
model in an experiment in which

the reconstruction has been obtained from a real object instead of using
a phantom. This 3D real object is a cube-shaped particle covered with a
thin shell of a different material. Experimental STEM HAADF data were
collected at the facilities of the DME-UCA node of the Spanish Singular
Infrastructure (ICTS) on Electron Microscopy of Materials ELECMI. The
difficulty of this reconstruction is mainly due to the thinness of the
outer layer of the object. Fig. 11 shows different views (top, front and
side) of the reconstructed images obtained with TVM𝑅𝑂𝐹 , LTV𝓁1

and R-
LTV𝓁1

-3 respectively, where the inner particle is represented in yellow
and the coverage in blue. TVM only reconstructs the coverage of
12

𝑅𝑂𝐹
some faces of the cube-shaped particle and ignores the top and bottom
coverage. Instead, LTV𝓁1

accurately reconstructs the whole coverage.
In the following, we highlight the robustness of the LTV𝓁1

model
in electron tomography instances with small number of projections
(generating distorted images) and including noise in the original im-
ages. Figs. 12–14 show the effect of the number of projections used in
the sinogram and the effect of noise in the reconstructions provided
by the TVM𝑅𝑂𝐹 and the LTV𝓁1

models. We can observe the good
performance of the LTV𝓁1

model when reconstructing the image using
a tilt range from −40◦ to 40◦ with projections recorded every 20◦ for
the catalyst and the circle phantoms, and every 10◦ for the Shepp–
Logan phantom. We observe that the enlarged areas of the images are
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Table 2
Best computational results obtained with different values of parameter 𝜇 using Algorithms 2 and 3. Projections recorded from −70◦ to 70◦ every 20◦ and 10◦.

Size 𝜇 TVM𝑅𝑂𝐹 LTV𝓁1
R-LTV𝓁1

𝜀 = 0.625 (20◦) and 𝜀 = 0.9375 (10◦) 𝜀 = 0.9375 (20◦) and 𝜀 = 0.9937 (10◦)

Subgradient (R-LTV𝓁1
-2) Volume (R-LTV𝓁1

-3) Subgradient (R-LTV𝓁1
-2) Volume (R-LTV𝓁1

-3)

Error Time (s) Error I(E)(%) Time (s) Error I(E)(%) Time (s) I(T)(%) Error I(E)(%) Time (s) I(T)(%) Error I(E)(%) Time (s) I(T)(%) Error I(E)(%) Time (s) I(T)(%)

Catalyst 20◦
512 × 512 27 2.9506 208.4 0.0026 99.91 208.4 4.0988 −28.01 58.0 72.16 3.9048 −24.43 61.6 70.44 1.0452 64.57 88.9 57.34 0.6765 77.07 99.0 52.49

210 2.4749 178.3 0.0759 96.93 178.3 5.4212 −54.34 71.0 60.17 4.1199 −39.92 68.9 61.35 0.1300 94.74 118.5 33.53 0.1278 94.83 97.8 45.14

1024 × 1024 22 9.1736 1412.4 0.0103 99.88 1412.4 6.4205 30.01 295.0 79.11 6.1456 33.00 293.5 79.21 1.3113 85.70 991.4 29.80 1.3925 84.82 838.9 40.60
29 4.2832 1704.5 0.0167 99.61 1704.5 6.6866 −35.94 425.8 75.01 8.9550 −52.16 338.3 80.15 1.4860 65.30 859.6 49.56 2.1799 49.10 1021.8 40.05

Circle 20◦
512 × 512 24 10.1022 138.1 0.0026 99.97 138.1 2.3753 76.48 43.8 68.33 2.4378 75.86 43.0 68.86 1.4609 85.53 61.7 55.32 1.5052 85.10 60.8 55.97

28 8.5764 156.9 0.0102 99.88 156.9 2.6110 69.55 44.4 71.70 2.4050 71.95 43.8 72.08 0.5927 93.08 72.3 53.91 0.4105 95.21 62.9 59.91

1024 × 1024 23 22.9713 1179.5 0.0161 99.92 1179.5 4.2989 81.28 183.2 84.46 4.0110 82.53 192.1 83.71 0.8763 96.18 350.0 70.32 1.1360 95.05 346.1 70.65
29 15.3521 2230.9 2.0638 86.55 2230.9 6.6054 56.97 210.5 90.56 8.9013 42.01 179.5 91.95 2.1441 86.03 660.0 70.41 2.1711 85.85 648.7 70.92

Shepp–Logan 20◦
512 × 512 211 42.0587 305.2 33.5665 20.19 305.2 36.3299 13.62 98.1 67.85 37.1811 11.59 99.0 67.56 33.6400 20.01 201.2 34.07 34.0079 19.14 184.0 39.71

27 38.7823 380.6 33.9012 12.58 380.6 36.2255 6.59 79.9 79.0 37.1757 4.14 78.3 79.42 34.5340 10.95 182.1 52.15 34.0633 12.16 156.4 58.90

1024 × 1024 28 77.1798 1928.9 67.8608 12.07 1928.9 83.5349 −7.60 694.7 63.98 83.2911 −7.33 620.6 67.82 69.0697 10.50 892.2 53.74 68.9473 10.66 1074.3 44.30
26 76.9172 1920.4 67.9078 11.71 1920.4 77.4542 −0.69 573.5 70.12 77.3609 −0.57 757.3 60.56 69.1973 10.03 1249.6 34.93 69.0492 10.22 1490.1 22.40

3D particle 20◦ 512 × 512 213 997.3568 50583.8 941.2781 5.62 50583.8 948.5734 4.89 47908.3 5.28 948.3910 4.90 46019.5 9.02 945.8866 5.15 47700.3 5.70 946.2156 5.12 48042.3 5.02
29 958.1982 72610.3 946.4871 1.22 72610.3 956.8915 0.13 24683.4 66.00 946.5640 1.21 30570.4 57.89 946.8748 1.18 47159.8 35.05 948.7411 0.98 43261.3 40.41

Catalyst 10◦
512 × 512 21 8.5064 356.7 0.0013 99.98 356.7 0.6142 92.77 274.4 23.07 0.5553 93.47 282.1 20.91 0.0014 99.98 341.6 4.23 0.1159 98.63 315.8 11.46

29 0.2928 505.0 0.0875 70.11 505.0 4.0747 −92.81 363.2 28.07 2.4391 −87.99 231.3 54.19 0.7744 −62.19 409.3 18.95 0.8510 −65.59 317.4 37.14

1024 × 1024 23 3.9529 3617.2 0.0055 99.86 3617.2 1.5286 61.32 1750.5 51.60 2.0567 47.96 1407.9 61.07 0.8521 78.44 1946.7 46.22 0.0055 99.86 1319.5 63.52
28 0.2931 3802.2 0.0918 68.67 3802.2 2.9466 −90.05 1310.4 65.63 3.8415 −92.37 1309.3 65.56 0.5916 −50.45 1557.5 59.03 1.5972 −81.64 1412.5 62.85

Circle 10◦
512 × 512 26 1.3590 668.4 0.0012 99.91 668.4 0.9146 32.70 158.3 76.31 1.5818 −14.08 165.3 75.26 0.0012 99.91 238.5 64.31 0.0012 99.91 294.1 55.99

210 0.2667 855.1 0.0065 97.56 855.1 0.4260 −37.39 241.6 71.74 0.4576 −41.71 250.5 70.70 0.1218 54.33 319.6 62.62 0.0068 97.45 311.9 63.52

1024 × 1024 25 3.7564 2873.6 0.0052 99.86 2873.6 0.5787 84.59 832.8 71.01 0.1231 96.72 1474.8 48.67 5.5833 −32.72 884.9 69.20 1.5497 58.74 1041.2 63.76
29 1.3287 7191.9 0.0063 99.52 7191.9 0.8890 33.09 1416.0 80.31 0.2143 83.87 1931.6 73.14 2.3855 −44.30 1144.0 84.09 1.2719 4.27 1941.6 73.00

Shepp–Logan 10◦
512 × 512 23 10.8441 435.3 0.0024 99.97 435.3 5.1500 52.50 292.1 32.89 5.6144 48.22 260.2 40.22 0.1051 99.03 358.9 17.55 0.1044 99.03 340.1 21.86

210 8.9705 463.8 0.8287 90.76 463.8 1.2472 86.09 410.4 11.51 8.4128 6.21 390.6 15.78 0.9723 89.16 450.3 2.91 1.6694 81.39 420.4 3.53

1024 × 1024 21 30.3607 3701.3 0.0104 99.96 3701.3 12.3224 59.41 1623.1 56.14 1.8386 93.94 2481.1 32.96 14.2066 53.20 1332.9 63.98 1.7935 94.09 3502.4 5.37
210 20.5717 3250.9 6.5423 68.19 3250.9 14.6974 28.55 2952.7 9.17 10.4050 49.42 3185.0 2.02 24.0474 −16.63 2658.1 18.23 10.2799 50.02 2709.4 16.65

3D particle 10◦ 512 × 512 210 661.0381 153319.3 435.9872 34.04 153319.3 494.2268 25.23 117382.7 23.43 503.9409 23.76 117236.3 23.53 437.4056 33.83 153418.3 −0.06 440.3873 33.37 120704.6 21.27
214 637.3490 123952.7 461.9227 27.52 123952.7 607.1224 4.74 85839.0 30.74 474.6064 25.53 104151.3 15.97 467.6632 26.62 119395.3 3.67 465.1980 27.01 121198.5 2.22
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Fig. 15. Percentage improvement of the error, I(E)(%).
accurately reconstructed. In addition, a similar performance can be
observed for noisy images.

As we have seen above, Algorithm 1 can be very effective for
reconstructing high quality images in small computing times. Still, for
the above analysis we have used the values of 𝜇 corresponding to the
best reconstruction for TVM𝑅𝑂𝐹 and to the best reconstruction obtained
with formulation LTV𝓁1

. Thus, the reader may wonder how sensitive
the different versions of our solution method are to the choice of these
parameters, and, in particular, what is the quality of the solutions that
they provide and how they compare to TVM𝑅𝑂𝐹 . Table 2, together with
the more detailed Tables S4–S9 in the Supplementary Material, address
this issue. These tables summarize the computational results obtained
when applying Algorithm 2 or Algorithm 3 in Step 1 of Algorithm 1,
and compare them with those of TVM𝑅𝑂𝐹 for the same parameter val-
ues, for projections every 20◦ and every 10◦, respectively with images
of 512 × 512 and 1024 × 1024 pixels. Table 2 is structured in four
main blocks of columns. The first block contains three columns, which
indicate the phantom that is tested, the image sizes, and the value
of the parameter 𝜇, respectively. Again, the values of 𝜇 correspond
to the best reconstruction for TVM𝑅𝑂𝐹 and to the best reconstruction
obtained with LTV𝓁1

. The second block, with two columns, reports the
results obtained with TVM𝑅𝑂𝐹 , which are used as the reference for
the comparison with the results shown in the remaining blocks. The
third block has three columns, corresponding to the results of LTV𝓁1

,
whereas the fourth block contains 16 columns corresponding to R-
LTV𝓁1

. The first eight columns of the last block correspond to 𝜀 = 0.625
and 𝜀 = 0.9375 for 8 and 16 projections respectively, and the last eight
columns correspond to 𝜀 = 0.9375 (8 projections) and 𝜀 = 0.9937 (16
projections). In its turn, each of these eight-column blocks is divided
in two: one for R-LTV𝓁1

-2, where subgradient optimization was used
in Step 1 of Algorithm 1 and one for R-LTV𝓁1

-3 where the volume
algorithm was used instead.

For each reconstruction algorithm we report its error (Error), com-
puted as indicated before (the 𝓁2-norm of the difference between the
reconstructed and original images), as well as the computing time
needed to obtain it (Time (s)). All computing times are measured in
seconds. In addition, the tables show the percentage improvements,
both for quality and time of each procedure relative to TVM𝑅𝑂𝐹 ,
respectively computed as:

𝐼(𝐸)(%) =
𝐸𝑟𝑟𝑜𝑟𝑇𝑉𝑀𝑅𝑂𝐹

− 𝐸𝑟𝑟𝑜𝑟𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
𝐸𝑟𝑟𝑜𝑟𝑇𝑉𝑀𝑅𝑂𝐹

× 100,

and

𝐼(𝑇 )(%) =
𝑇 𝑖𝑚𝑒𝑇𝑉𝑀𝑅𝑂𝐹

− 𝑇 𝑖𝑚𝑒𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
× 100.
14

𝑇 𝑖𝑚𝑒𝑇𝑉𝑀𝑅𝑂𝐹
As mentioned, we have fixed the solution time of LTV𝓁1
as stopping

criteria of TVAL3.
In Table 2, we can appreciate the improvements of the 𝓁1 based

models with respect to TVM𝑅𝑂𝐹 , which are more remarkable for the
Catalyst and Circle phantoms, with a quality improvement of about
99%. On the other hand, the computing times of R-LTV𝓁1

for 2D
instances are particularly important when dealing with 3D volumes,
because the 2D reconstruction procedures are applied to every slice
that constitutes the whole volume. As explained, two different 𝜀 values
have been chosen for two different accuracies. The closer to one the
value of 𝜀 is, the higher are the quality of the image and the computing
time. While R-LTV𝓁1

does not provide a good reconstruction when
𝜀 = 0.625, a significant improvement in the reconstruction quality is
achieved when 𝜀 = 0.9375. To analyse the influence of the number of
projections on the quality of the reconstructions produced by TVM𝑅𝑂𝐹
and LTV𝓁1

, in each case we have computed the overall percentage
average improvements for 512 × 512 and 1024 × 1024 images when
projections are computed every 10◦ instead of every 20◦, considering
in each case the best value of 𝜇-parameter. For the different phantoms
these improvements are the following. With Catalyst, 90.66% and
48.30% for TVM𝑅𝑂𝐹 and LTV𝓁1

, respectively. With Circle, 94.11% and
60.77% for TVM𝑅𝑂𝐹 and LTV𝓁1

, respectively. For the Shepp–Logan
phantom, 75.06% and 99.98%, respectively. Finally, for the 3D particle,
33.48% and 53.68% for TVM𝑅𝑂𝐹 and LTV𝓁1

, respectively. These results
show that LTV𝓁1

is less sensitive to the number of projections for
Catalyst and Circle phantoms. Regarding the Shepp–Logan and the 3D
particle, we can observe that much better reconstructions are obtained
when projections are computed every 10◦ instead every 20◦, both for
TVM𝑅𝑂𝐹 and LTV𝓁1

. In any case, the reconstructions obtained with
LTV𝓁1

are still better than those obtained with TVM𝑅𝑂𝐹 , obtaining in
the case of projections every 10◦ even much higher percentages of
improvement than every 20◦. In addition, we observe that there is
not a significant difference between the reconstructions made by R-
LTV𝓁1

using the subgradient or the volume algorithms. Actually, the
performance of these two options depends on the case under study,
although in general we appreciate a slightly better behaviour (both
in quality of solutions and in reduction of computing times) in the
volume algorithm. These comparative results, reported in Table S4–S9
of Supplementary Material, are illustrated in Figs. 15 and 16 consider-
ing as the value of 𝜇, the one that provides the best solution in each
reconstruction procedure.

7. Conclusions

In this paper, we have considered an image reconstruction model
based on Total Variation Minimization using the 𝓁1-norm, which out-
performs state-of-the-art reconstruction models, both, in terms of the
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Fig. 16. Percentage improvement of time, I(T)(%).
quality of reconstructed nano-objects using ET and with respect to the
number of projections needed for the reconstruction (reducing the mor-
phological damage of samples due to the electron beams). Moreover,
the resulting mathematical programming formulation that arises in
practice with the proposed model, uses a large number of variables and
constraints, which means that it takes a long computing time to obtain
optimal solutions with off-the-shelf solvers. Thus, a procedure based
on information from dual variables was developed to obtain a reduced
problem. In particular, by considering the complementary slackness
conditions, some constraints that did not provide useful information
for the image reconstruction, were eliminated or modified. It has been
possible to verify with different reconstructions that this procedure
gives good results in terms of image quality and computing time and
produces more accurate reconstructions than TVM𝑅𝑂𝐹 .
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