2,478 research outputs found

    The Jurisdiction of the D.C. Circuit

    Get PDF

    The Jurisdiction of the D.C. Circuit

    Get PDF
    The U.S. Court of Appeals for the D.C. Circuit is unique among federal courts, well known for an unusual caseload that is disproportionally weighted toward administrative law. What explains that unusual caseload? This Article explores that question. We identify several factors that “push” some types of cases away from the Circuit and several factors that “pull” other cases to it. We give particular focus to the jurisdictional provisions of federal statutes, which reveal congressional intent about the types of actions over which the D.C. Circuit should have special jurisdiction. Through a comprehensive examination of the U.S. Code, we identify several trends. First, the Congress is more likely to give the D.C. Circuit exclusive jurisdiction over the review of administrative rulemaking than over the review of agency decisions imposing a penalty. Second, the Congress is more likely to give the D.C. Circuit exclusive jurisdiction over the review of independent agency actions than over the review of executive agency actions. Finally, the Congress tends to grant the D.C. Circuit exclusive jurisdiction over matters that are likely to have a national effect. In sum, we explore what makes this court unique, from its history to its modern docket and jurisdiction

    Intragenic recombination between pseudogenes as a source of new disease specificity at a simple resistance locus

    Get PDF
    BACKGROUND: Pooling of multi-site MRI data is often necessary when a large cohort is desired. However, different scanning platforms can introduce systematic differences which confound true effects of interest. One may reduce multi-site bias by calibrating pivotal scanning parameters, or include them as covariates to improve the data integrity. NEW METHOD: In the present study we use a source-based morphometry (SBM) model to explore scanning effects in multi-site sMRI studies and develop a data-driven correction. Specifically, independent components are extracted from the data and investigated for associations with scanning parameters to assess the influence. The identified scanning-related components can be eliminated from the original data for correction. RESULTS: A small set of SBM components captured most of the variance associated with the scanning differences. In a dataset of 1460 healthy subjects, pronounced and independent scanning effects were observed in brainstem and thalamus, associated with magnetic field strength-inversion time and RF-receiving coil. A second study with 110 schizophrenia patients and 124 healthy controls demonstrated that scanning effects can be effectively corrected with the SBM approach. COMPARISON WITH EXISTING METHOD(S): Both SBM and GLM correction appeared to effectively eliminate the scanning effects. Meanwhile, the SBM-corrected data yielded a more significant patient versus control group difference and less questionable findings. CONCLUSIONS: It is important to calibrate scanning settings and completely examine individual parameters for the control of confounding effects in multi-site sMRI studies. Both GLM and SBM correction can reduce scanning effects, though SBM's data-driven nature provides additional flexibility and is better able to handle collinear effects

    Advancing functional connectivity research from association to causation

    Get PDF
    Cognition and behavior emerge from brain network interactions, such that investigating causal interactions should be central to the study of brain function. Approaches that characterize statistical associations among neural time series-functional connectivity (FC) methods-are likely a good starting point for estimating brain network interactions. Yet only a subset of FC methods ('effective connectivity') is explicitly designed to infer causal interactions from statistical associations. Here we incorporate best practices from diverse areas of FC research to illustrate how FC methods can be refined to improve inferences about neural mechanisms, with properties of causal neural interactions as a common ontology to facilitate cumulative progress across FC approaches. We further demonstrate how the most common FC measures (correlation and coherence) reduce the set of likely causal models, facilitating causal inferences despite major limitations. Alternative FC measures are suggested to immediately start improving causal inferences beyond these common FC measures

    Biogeochemical hotspots in Forested Landscapes: The Role of Vernal Pools in Denitrification and Organic Matter

    Get PDF
    Quantifying spatial and temporal heterogeneity in ecosystem processes presents a challenge for conserving ecosystem function across landscapes. In particular, many ecosystems contain small features that play larger roles in ecosystem processes than their size would indicate; thus, they may represent ‘‘hotspots’’ of activity relative to their surroundings. Biogeochemical hotspots are characterized as small features within a landscape that show comparatively high chemical reaction rates. In northeastern forests in North America, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of summer. Ephemeral flooding alters soil moisture and the depth of the soil’s oxic/anoxic boundary, which may affect biogeochemical processes. We studied the effects of vernal pools on leaf-litter decomposition rates, soil enzyme activity, and denitrification in vernal pools to assess whether they function as biogeochemical hotspots. Our results indicate that seasonal inundation enhanced leaf-litter decomposition, denitrification, and enzyme activity in vernal pools relative to adjacent forest sites. Leaves in seasonally flooded areas decomposed faster than leaves in terra firme forest sites. Flooding also influenced the C, N, and P stoichiometry of decomposing leaf litter and explained the variance in microbial extracellular enzyme activity for phosphatase, β-D- glucosidase, and β-N-acetylglucosaminidase. Additionally, denitrification rates were enhanced by seasonal flooding across all of the study pools. Collectively, these data suggest that vernal pool eco- systems may function as hotspots of leaf-litter decomposition and denitrification and play a significant role in decomposition and nutrient dynamics relative to their size

    Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado

    Get PDF
    We describe an experiment, located in south-east Colorado, USA, that measured aerosol optical depth profiles using two Lidar techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40km distant, viewed the laser beam from the side. This detector featured a 3.5m2 mirror and measured elastically scattered light in a bistatic Lidar configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic Lidar detectors.Comment: 34 pages, 16 figure

    The highly conserved methionine of subunit I of the heme-copper oxidases is not at the heme-copper dinuclear center: Mutagenesis of M110 in subunit I of cytochrome bo3-type ubiquinol oxidase from Escherichia coli

    Get PDF
    AbstractA common feature within the heme-copper oxidase superfamily is the dinuclear heme-copper center. Analysis via extended X-ray absorption fine structure (EXAFS) has led to the proposal that sulfur may be bound to CUB, a component of the dinuclear center, and a highly conserved methionine (M110 in the E. coli oxidase) in subunit I has been proposed as the ligand. Recent models of subunit I, however, suggest that this residue is unlikely to be near CUB, but is predicted to be near the low spin heme component of the heme-copper oxidases. In this paper, the role of M110 is examined by spectroscopic analyses of site-directed mutants of the bo3-type oxidase from Escherichia coli. The results show that M110 is a non-essential residue and suggest that it is probably not near the heme-copper dinuclear center

    The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona\u2019s Meteor Crater

    Get PDF
    The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona\u2019s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm 12type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results
    corecore