275 research outputs found

    The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera, Tipulidae)

    Full text link
    The digestive system of larvae of Tipula abdominalis (Diptera, Tipulidae), a stream detritivore, is poorly adapted for the digestion of the major polysaccharides in its diet, but well adapted for the digestion of protein. These crane fly larvae are unable to digest the major cell wall polysaccharides of higher plants, i.e., cellulose, hemicellulose and pectin. The only polysaccharides toward which the midguts of T. abdominalis exhibited any activity were α-amylose and laminarin, indicating that polysaccharide digestion is restricted to α-1,4-and ÎČ-1,3-glucans. The most concentrated source of these two classes of carbohydrates in submerged leaf litter would be associated fungal tissue. The midgut of T. abdominalis is strongly alkaline throughout, with a maximum pH near 11.5 in a narrow zone near the midpoint. Proteolytic activity in the midgut is extraordinarily high, and the pH optimum for midgut proteolytic activity is above 11. We conclude that the high alkalinity and high proteolytic activity observed in T. abdominalis larvae are manifestations of a highly efficient protein-digesting system, a system of crucial importance to a nitrogen-limited organism which must derive its nitrogen from a resource in which much of the limited nitrogen present is in a “bound” form in complexes of proteins with lignins and polyphenols.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47733/1/442_2004_Article_BF00346265.pd

    The role of the freshwater shrimp atyaephyra desmarestii in leaf litter breakdown in streams

    Get PDF
    This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/a31518u452m03286/In aquatic ecosystems, microorganisms and invertebrates provide critical links between plant detritus and higher trophic levels. Atyaephyra desmarestii is an omnivorous decapod that inhabits freshwaters and exhibits high tolerance to temperature oscillations and high ability to colonize new habitats. Although A. desmarestii is able to ingest a variety of foods, few studies have been conducted to elucidate the role of this freshwater shrimp on detritus breakdown in streams. In this study, A. desmarestii was allowed to feed on conditioned or unconditioned alder and eucalyptus leaves in microcosms with or without access to its fecal pellets. At the end of the experiment, total body length of the animals was measured, and the remaining leaves and fecal pellets were used for dry mass quantification and assessment of bacterial and fungal diversity by denaturing gradient gel electrophoresis (DGGE). Cluster analyses of DGGE fingerprints indicated that the major differences in microbial communities on leaves were between leaf types, while on fecal pellets were between conditioned and unconditioned leaves. However, the consumption rate by the shrimp did not differ between leaf types, and was significantly higher on leaves conditioned by microorganisms and in treatments without access to feces. In treatments without access to feces, the production of feces and fine particulate organic matter was also significantly higher for conditioned leaves. Overall, our results support the feeding plasticity of A. desmarestii and its potential role in plant litter breakdown in streams. This might have implications for maintaining stream ecosystem functioning, particularly if more vulnerable shredders decline.The Portuguese Foundation for the Science and Technology supported S. Duarte (SFRH/BPD/47574/2008

    MiR-200c Regulates Noxa Expression and Sensitivity to Proteasomal Inhibitors

    Get PDF
    The pro-apoptotic p53 target Noxa is a BH3-only protein that antagonizes the function of selected anti-apoptotic Bcl-2 family members. While much is known regarding the transcriptional regulation of Noxa, its posttranscriptional regulation remains relatively unstudied. In this study, we therefore investigated whether Noxa is regulated by microRNAs. Using a screen combining luciferase reporters, bioinformatic target prediction analysis and microRNA expression profiling, we identified miR-200c as a negative regulator of Noxa expression. MiR-200c was shown to repress basal expression of Noxa, as well as Noxa expression induced by various stimuli, including proteasomal inhibition. Luciferase reporter experiments furthermore defined one miR-200c target site in the Noxa 3â€ČUTR that is essential for this direct regulation. In spite of the miR-200c:Noxa interaction, miR-200c overexpression led to increased sensitivity to the clinically used proteasomal inhibitor bortezomib in several cell lines. This apparently contradictory finding was reconciled by the fact that in cells devoid of Noxa expression, miR-200c overexpression had an even more pronounced positive effect on apoptosis induced by proteasomal inhibition. Together, our data define miR-200c as a potentiator of bortezomib-induced cell death. At the same time, we show that miR-200c is a novel negative regulator of the pro-apoptotic Bcl-2 family member Noxa

    Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone

    Get PDF
    Particulate organic matter is the major source of energy for most low-order streams, but a large part of this litter is buried within bed sediment during floods and thus become poorly available for benthic food webs. The fate of this buried litter is little studied. In most cases, measures of breakdown rates consist of burying a known mass of litter within the stream sediment and following its breakdown over time. We tested this method using large litter bags (15 x 15 cm) and two field experiments. First, we used litter large bags filled with Alnus glutinosa leaves (buried at 20 cm depth with a shovel) in six stations within different land-use contexts and with different sediment grain sizes. Breakdown rates were surprisingly high (0.0011–0.0188 day-1) and neither correlate with most of the physico-chemical characteristics measured in the interstitial habitats nor with the land-use around the stream. In contrast, the rates were negatively correlated with a decrease in oxygen concentrations between surface and buried bags and positively correlated with both the percentage of coarse particles (20–40 mm) in the sediment and benthic macro-invertebrate richness. These results suggest that the vertical exchanges with surface water in the hyporheic zone play a crucial role in litter breakdown. Second, an experimental modification of local sediment (removing fine particles with a shovel to increase vertical exchanges) highlighted the influence of grain size on water and oxygen exchanges, but had no effect on hyporheic breakdown rates. Burying large litter bags within sediments may thus not be a relevant method, especially in clogged conditions, due to changes induced through the burial process in the vertical connectivity between surface and interstitial habitats that modify organic matter processing

    Happiness Through Vacationing: Just a Temporary Boost or Long-Term Benefits?

    Get PDF
    Does vacationing add to our happiness in the long run? This question was addressed in a study of 3,650 Dutch citizens who reported their leisure travel every 3 months during 2 years and rated their happiness at the end of each year. Participants who had been on vacation appeared to be marginally happier, in terms of hedonic level of affect, than those who had not. This difference in Affect balance between vacationers and non-vacationers is probably due to a very minor causal effect of vacationing on hedonic level of affect. Possibly, vacationing is positively reminisced and these memories allow for the prevalence of more positive affect in people's lives. Happiness did not predict vacationing. The effect of holiday trips on vacationers' happiness is mostly short-lived; among vacationers, happiness was unrelated to the number of trips and days spent on vacation. A separate analysis of vacationers, who value vacationing most, yielded the same results. Implications for future research are discussed

    Differential Effects of Aging on Fore– and Hindpaw Maps of Rat Somatosensory Cortex

    Get PDF
    Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation
    • 

    corecore