282 research outputs found

    What Makes a Great Journal Great in the Sciences? Which Came First, the Chicken or the Egg?

    Get PDF
    The paper is concerned with analysing what makes a great journal great in the sciences, based on quantifiable Research Assessment Measures (RAM). Alternative RAM are discussed, with an emphasis on the Thomson Reuters ISI Web of Science database (hereafter ISI). Various ISI RAM that are calculated annually or updated daily are defined and analysed, including the classic 2-year impact factor (2YIF), 5-year impact factor (5YIF), Immediacy (or zero-year impact factor (0YIF)), Eigenfactor, Article Influence, C3PO (Citation Performance Per Paper Online), h-index, Zinfluence, PI-BETA (Papers Ignored - By Even The Authors), Impact Factor Inflation (IFI), and three new RAM, namely Historical Self-citation Threshold Approval Rating (H-STAR), 2 Year Self-citation Threshold Approval Rating (2Y-STAR), and Cited Article Influence (CAI). The RAM data are analysed for the 6 most highly cited journals in 20 highly-varied and well-known ISI categories in the sciences, where the journals are chosen on the basis of 2YIF. The application to these 20 ISI categories could be used as a template for other ISI categories in the sciences and social sciences, and as a benchmark for newer journals in a range of ISI disciplines. In addition to evaluating the 6 most highly cited journals in each of 20 ISI categories, the paper also highlights the similarities and differences in alternative RAM, finds that several RAM capture similar performance characteristics for the most highly cited scientific journals, determines that PI-BETA is not highly correlated with the other RAM, and hence conveys additional information regarding research performance. In order to provide a meta analysis summary of the RAM, which are predominantly ratios, harmonic mean rankings are presented of the 13 RAM for the 6 most highly cited journals in each of the 20 ISI categories. It is shown that emphasizing THE impact factor, specifically the 2-year impact factor, of a journal to the exclusion of other informative RAM can lead to a distorted evaluation of journal performance and influence on different disciplines, especially in view of inflated journal self citations

    Analysis of Kelly-optimal portfolios

    Get PDF
    We investigate the use of Kelly's strategy in the construction of an optimal portfolio of assets. For lognormally distributed asset returns, we derive approximate analytical results for the optimal investment fractions in various settings. We show that when mean returns and volatilities of the assets are small and there is no risk-free asset, the Kelly-optimal portfolio lies on Markowitz Efficient Frontier. Since in the investigated case the Kelly approach forbids short positions and borrowing, often only a small fraction of the available assets is included in the Kelly-optimal portfolio. This phenomenon, that we call condensation, is studied analytically in various model scenarios.Comment: 15 pages, 7 figures; extended list of references and some minor modification

    The intellectual influence of economic journals: quality versus quantity

    Get PDF
    The evaluation of scientific output has a key role in the allocation of research funds and academic positions. Decisions are often based on quality indicators for academic journals, and over the years, a handful of scoring methods have been proposed for this purpose. Discussing the most prominent methods (de facto standards) we show that they do not distinguish quality from quantity at article level. The systematic bias we find is analytically tractable and implies that the methods are manipulable. We introduce modified methods that correct for this bias, and use them to provide rankings of economic journals. Our methodology is transparent; our results are replicable

    Antibiotic control of antibiotic resistance in hospitals: a simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using mathematical deterministic models of the epidemiology of hospital-acquired infections and antibiotic resistance, it has been shown that the rates of hospital-acquired bacterial infection and frequency of antibiotic infections can be reduced by (i) restricting the admission of patients colonized with resistant bacteria, (ii) increasing the rate of turnover of patients, (iii) reducing transmission by infection control measures, and (iv) the use of second-line drugs for which there is no resistance. In an effort to explore the generality and robustness of the predictions of these deterministic models to the real world of hospitals, where there is variation in all of the factors contributing to the incidence of infection, we developed and used a stochastic model of the epidemiology of hospital-acquired infections and resistance. In our analysis of the properties of this model we give particular consideration different regimes of using second-line drugs in this process.</p> <p>Methods</p> <p>We developed a simple model that describes the transmission of drug-sensitive and drug-resistant bacteria in a small hospital. Colonized patients may be treated with a standard drug, for which there is some resistance, and with a second-line drug, for which there is no resistance. We then ran deterministic and stochastic simulation programs, based on this model, to predict the effectiveness of various treatment strategies.</p> <p>Results</p> <p>The results of the analysis using our stochastic model support the predictions of the deterministic models; not only will the implementation of any of the above listed measures substantially reduce the incidences of hospital-acquired infections and the frequency of resistance, the effects of their implementation should be seen in months rather than the years or decades anticipated to control resistance in open communities. How effectively and how rapidly the application of second-line drugs will contribute to the decline in the frequency of resistance to the first-line drugs depends on how these drugs are administered. The earlier the switch to second-line drugs, the more effective this protocol will be. Switching to second-line drugs at random is more effective than switching after a defined period or only after there is direct evidence that the patient is colonized with bacteria resistant to the first antibiotic.</p> <p>Conclusions</p> <p>The incidence of hospital-acquired bacterial infections and frequencies of antibiotic resistant bacteria can be markedly and rapidly reduced by different readily implemented procedures. The efficacy using second line drugs to achieve these ends depends on the protocol used for their administration.</p

    Who is the best player ever? A complex network analysis of the history of professional tennis

    Get PDF
    We consider all matches played by professional tennis players between 1968 and 2010, and, on the basis of this data set, construct a directed and weighted network of contacts. The resulting graph shows complex features, typical of many real networked systems studied in literature. We develop a diffusion algorithm and apply it to the tennis contact network in order to rank professional players. Jimmy Connors is identified as the best player of the history of tennis according to our ranking procedure. We perform a complete analysis by determining the best players on specific playing surfaces as well as the best ones in each of the years covered by the data set. The results of our technique are compared to those of two other well established methods. In general, we observe that our ranking method performs better: it has a higher predictive power and does not require the arbitrary introduction of external criteria for the correct assessment of the quality of players. The present work provides a novel evidence of the utility of tools and methods of network theory in real applications.Comment: 10 pages, 4 figures, 4 table

    Nodal dynamics, not degree distributions, determine the structural controllability of complex networks

    Get PDF
    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167-173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set (PDS), is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page

    Sociobiological Control of Plasmid copy number

    Get PDF
    Background:&#xd;&#xa;All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.&#xd;&#xa;&#xd;&#xa;Model:&#xd;&#xa;Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a &#x201c;cheater&#x201d; or &#x201c;selfish&#x201d; plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.&#xd;&#xa;&#xd;&#xa;Results:&#xd;&#xa;The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal &#x201c;hypercheaters&#x201d; could further arrest the copy numbers to a substantially lower level.&#xd;&#xa;&#xd;&#xa;Conclusions:&#xd;&#xa;These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone

    The evolution of plasmid-carried antibiotic resistance

    Get PDF
    BACKGROUND: Antibiotic resistance represents a significant public health problem. When resistance genes are mobile, being carried on plasmids or phages, their spread can be greatly accelerated. Plasmids in particular have been implicated in the spread of antibiotic resistance genes. However, the selective pressures which favour plasmid-carried resistance genes have not been fully established. Here we address this issue with mathematical models of plasmid dynamics in response to different antibiotic treatment regimes. RESULTS: We show that transmission of plasmids is a key factor influencing plasmid-borne antibiotic resistance, but the dosage and interval between treatments is also important. Our results also hold when plasmids carrying the resistance gene are in competition with other plasmids that do not carry the resistance gene. By altering the interval between antibiotic treatments, and the dosage of antibiotic, we show that different treatment regimes can select for either plasmid-carried, or chromosome-carried, resistance. CONCLUSIONS: Our research addresses the effect of environmental variation on the evolution of plasmid-carried antibiotic resistance

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments
    corecore