3,654 research outputs found

    Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation

    Get PDF
    When hybridisation carries a cost, natural selection is predicted to favour evolution of traits that allow assortative mating (reinforcement). Incipient speciation between the two European house mouse subspecies, Mus musculus domesticus and M.m.musculus, sharing a hybrid zone, provides an opportunity to understand evolution of assortative mating at a molecular level. Mouse urine odours allow subspecific mate discrimination, with assortative preferences evident in the hybrid zone but not in allopatry. Here we assess the potential of MUPs (major urinary proteins) as candidates for signal divergence by comparing MUP expression in urine samples from the Danish hybrid zone border (contact) and from allopatric populations. Mass spectrometric characterisation identified novel MUPs in both subspecies involving mostly new combinations of amino acid changes previously observed in M.m.domesticus. The subspecies expressed distinct MUP signatures, with most MUPs expressed by only one subspecies. Expression of at least eight MUPs showed significant subspecies divergence both in allopatry and contact zone. Another seven MUPs showed divergence in expression between the subspecies only in the contact zone, consistent with divergence by reinforcement. These proteins are candidates for the semiochemical barrier to hybridisation, providing an opportunity to characterise the nature and evolution of a putative species recognition signal

    Origin of chemically distinct discs in the Auriga cosmological simulations

    Get PDF
    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]–[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way

    Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT.

    Get PDF
    Exome sequencing identified compound heterozygous mutations in the recently discovered mitochondrial methionyl-tRNA formyltransferase (MTFMT) gene in two sisters with mild Leigh syndrome and combined respiratory chain deficiency. The mutations lead to undetectable levels of the MTFMT protein. Blue native polyacrylamide gel electrophoresis showed decreased complexes I and IV, and additional products stained with complex V antibodies, however the overall steady state level of mt-tRNA(Met) was normal. Our data illustrate that exome sequencing is an excellent diagnostic tool, and its value in clinical medicine is enormous, however it can only be optimally exploited if combined with detailed phenotyping and functional studies

    Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme

    Get PDF
    Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified. Methodology/Principal Findings: Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora. Conclusions: This study highlights that experimental works published during the last >25 years on an AMF named ‘G. versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description

    Inflammatory myofibroblastic tumor of epididymis: a case report and review of literature

    Get PDF
    Background Epididymal inflammatory myofibroblastic tumor, also known by various other synonyms is a rare benign disease. Only eight cases have been reported to date. The most common presentation is a scrotal mass of variable duration. For a scrotal mass it is difficult to distinguish a benign or malignant etiology, in addition to the origin whether from testis or epididymis. As a result the definitive diagnosis can only be established by surgical exploration. Case presentation We report the ninth case of epididymal IMT who based on clinical and radiological findings underwent radical orchidectomy, with the histology suggestive of inflammatory myofibroblastic tumor. At 4 years follow up the patient is free of disease recurrence. Conclusion IMT though rare should be considered in the differential diagnosis of epididymal mass. Clinically it is often difficult to distinguish the origin of mass and even though the disease has benign nature and course it is crucial to counsel patients for orchidectomy as definitive diagnosis is established on surgical exploration

    Association of LMP/TAP Gene Polymorphisms with Tuberculosis Susceptibility in Li Population in China

    Get PDF
    Background: Tuberculosis (TB) is a contagious disease affected by multiple genetic and environmental factors. Several association studies have suggested that cellular immune response is vital for controlling and preventing of tuberculosis infection. Low molecular weight polypeptides (LMPs) and transporters with antigen processing (TAPs) are the main molecules in the processing and presentation pathway for intracellular antigens. This study was performed to elucidate whether these antigen-processing genes (LMP/TAP) polymorphisms could be associated with the risk of tuberculosis infection in China. Methodology/Principal Findings: We recruited 205 active pulmonary tuberculosis patients and 217 normal controls from Li population for this study. Four polymorphisms of LMP/TAP genes were determined by PCR-RFLP assay and haplotypes were constructed by software PHASE 1.0. Of the total four polymorphisms, genotype frequencies of LMP7 AA homozygote and CA heterozygote were significantly greater among cases compared to controls, with odds ratio of 3.77 (95 % CI: 1.60–8.89; P = 0.002) and 2.97 (95 % CI: 1.80–4.90; P,0.0001), respectively. The genotypes of TAP1-2 GG homozygote and AG heterozygote were more frequent in subjects with TB than in controls, with odds ratio of 3.94 (95 % CI: 1.82–8.53; P = 0.001) and 2.87 (95 % CI: 1.75–4.71; P,0.0001), respectively. Similarly, we found that haplotype B which carried LMP7 and TAP1-2 variations significantly increased the susceptibility to TB (OR = 3.674, 95 % CI: 2.254–5.988; P,0.0001). Moreover, it i

    Ground characterisation for PISA pile testing and analysis

    Get PDF
    This paper is the first of a set of linked publications on the PISA Joint Industry Research Project, which was concerned with the development of improved design methods for monopile foundations in offshore wind applications. PISA involved large-scale pile tests in overconsolidated glacial till at Cowden, north-east England, and in dense, normally consolidated marine sand at Dunkirk, northern France. The paper presents the characterisation of the two sites, which was crucial to the design of the field experiments and advanced numerical modelling of the pile–soil interactions. The studies described, which had to be completed at an early stage of the PISA project, added new laboratory and field campaigns to historic investigations at both sites. They enabled an accurate description of soil behaviour from small strains to ultimate states to be derived, allowing analyses to be undertaken that captured both the serviceability and limit state behaviour of the test monopiles

    Effective theories of single field inflation when heavy fields matter

    Get PDF
    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.Comment: (v1) 25 pages, 1 figure; (v2) references added and typos corrected, to appear in Journal of High Energy Physic

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances
    corecore