82 research outputs found

    Metabiotic effects of Fusarium spp. on Escherichia coli O157:H7 and Listeria monocytogenes on raw portioned tomatoes.

    Get PDF
    The metabiotic effects of Fusarium proliferatum, F. avenaceum, and F. oxysporum on Escherichia coli O157:H7 and Listeria monocytogenes in fresh tomatoes were investigated. Tomatoes were preinoculated with the molds and incubated at 15 degrees C for 7 days; then they were inoculated separately with the pathogens, packaged in air and modified atmosphere (5% O2, 30% CO2, and 65% N2), and stored at 4, 8, and 12 degrees C for 9 days. The cell loads of pathogens and lactic acid bacteria and the pH were evaluated periodically. The data were modeled through some different mathematical models to assess the shoulder length, i.e., the time before the beginning of the exponential death phase, the 1-log reduction time (s), and the pathogen death time (deltastand). The preinoculation of tomatoes with the molds enhanced the survival of E. coli O157:H7 by prolonging shoulder length and 8 parameters; this effect, however, was not observed for L. monocytogenes. pH values did not undergo significant changes within the storage time, and the lactic acid bacteria increased from 5 to 7 log CFU/g, without significant differences among the storage temperatures or the packaging atmospheres. The results of this research showed that the use of fresh tomatoes colonized by fusaria (even if the contamination is not visible) could increase significantly the risk of outbreaks due to some pathogens that could be on the surface of fruits and vegetables as a result of cross-contamination at home or incorrect postharvest operations

    Modelling the Survival of Escherichia coli O157:H7 on Raw Portioned Tomatoes, Inoculated with Aspergillus fumigatus and Emericella nidulans

    Get PDF
    The metabiotic interactions occurring among two fungi (Aspergillus fumigatus and Emericella nidulans) and Escherichia coli O157:H7 on raw portioned tomatoes were studied. Tomatoes, preinoculated with the moulds and inoculated with the pathogen, were packaged in air and stored at 4, 8 and 12∘C for 9 days; pathogen cell number and pH were monitored throughout the storage and the data were modeled using three different equations (Geeraerd, Weibull, and modified Weibull), to assess the shoulder length, the 1-log reduction time, and the death time. Both A. fumigatus and E. nidulans increased the survival of E. coli O157:H7 through the prolongation of the shoulder length; in contrast, the death time was significantly increased. The results of this paper suggested that the metabiotic interactions aspergilli/E. coli O 157:H7 could be of public concern, as the consumption of tomatoes (or other fruits and vegetables) contaminated both by the moulds and the pathogen is a possible scenario

    Modelling of autogenous healing for regular concrete via a discrete model

    Get PDF
    In this paper a numerical model for autogenous healing of normal strength concrete is presented in detail, along with preliminary results of its validation, which is planned to be achieved by comparing the results of numerical analyses with those of a dedicated experimental campaign. Recently the SMM (Solidification-Microprestress-Microplane model M4) model for concrete, which makes use of a modified microplane model M4 and the solidification-microprestress theory, has been extended to incorporate the autogenous healing effects. The moisture and heat fields, as well as the hydration degree, are obtained from the solution of a hygro-thermo-chemical problem, which is coupled with the SMM model. The updated model can also simulate the effects of cracking on the permeability and the restoring effect of the self-healing on the mechanical constitutive laws, i.e. the microplane model. In this work, the same approach is introduced into a discrete model, namely the Lattice Discrete Particle Model (LDPM). A numerical example is presented to validate the proposed computational model employing experimental data from a recent test series undertaken at Politecnico di Milano

    A severe infective endocarditis successfully treated with linezolid

    Get PDF
    Despite significant improvements in surgical and medical therapy, prosthetic valve endocarditis (PVE) is a diagnostic and therapeutic challenge and is often associated with a severe prognosis. We report a case of a 59-year-old woman, with  PVE and bacterial endocarditis (Streptococcus bovis) successfully treated with linezolid. Linezolid is a bacteriostatic oxazolidinone antibiotic that has been proven to be effective for the treatment of patients with pneumonia, skin and soft tissue infections, and infections due to Gram-positive cocci. Linezolid is not yet recognised as a standard therapy for infective endocarditis, but its use becomes a necessity when infection is due to multidrug-resistant microorganisms

    Glio-vascular modifications caused by Aquaporin-4 deletion in the mouse retina

    Get PDF
    Aquaporin-4 (AQP4) is the Central Nervous System water channel highly expressed at the perivascular glial domain. In the retina, two types of AQP4 expressing glial cells take part in the blood-retinal barrier (BRB), astrocytes and Müller cells. The aim of the present study is to investigate the effect of AQP4 deletion on the retinal vasculature by looking at typical pathological hallmark such as BRB dysfunction and gliotic condition.AQP4 dependent BRB properties were evaluated by measuring the number of extravasations in WT and AQP4 KO retinas by Evans blue injection assay. AQP4 deletion did not affect the retinal vasculature, as assessed by Isolectin B4 staining, but caused BRB impairment to the deep plexus capillaries while the superficial and intermediate capillaries were not compromised. To investigate for gliotic responses caused by AQP4 deletion, Müller cells and astrocytes were analysed by immunofluorescence and western blot, using the Müller cell marker Glutamine Synthetase (GS) and the astrocyte marker GFAP. While GS expression was not altered in AQP4 KO retinas, a strong GFAP upregulation was found at the level of AQP4 KO astrocytes at the superficial plexus and not at Müller cells at the intermediate and deep plexi. These data, together with the upregulation of inflammatory markers (TNF-α, IL-6, IL-1β and ICAM-1) in AQP4 KO retinas indicated AQP4 deletion as responsible for a gliotic phenotype. Interestingly, no GFAP altered expression was found in AQP4 siRNA treated astrocyte primary cultures. All together these results indicate that AQP4 deletion is directly responsible for BRB dysfunction and gliotic condition in the mouse retina. The selective activation of glial cells at the primary plexus suggests that different regulatory elements control the reaction of astrocytes and Müller cells. Finally, GFAP upregulation is strictly linked to gliovascular crosstalk, as it is absent in astrocytes in culture. This study is useful to understand the role of AQP4 in the perivascular domain in the retina and its possible implications in the pathogenesis of retinal vascular diseases and of Neuromyelitis Optica, a human disease characterized by anti-AQP4 auto-antibodies

    Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica

    Get PDF
    Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field. In the present study, we have experimentally tested this MD-prediction using the classic mutagenesis approach. We substituted T56 with V56 and tested this mutant for AQP4 aggregates and AQP4-IgG binding. gSTED super-resolution microscopy showed that the mutation does not affect AQP4 aggregate dimension; immunofluorescence and cytofluorimetric analysis demonstrated its unaltered AQP4-IgG binding, therefore invalidating the MD-prediction. We later investigated whether AQP4, expressed in Sf9 insect and HEK-293F cells, is able to correctly aggregate before and after the purification steps usually applied to obtain AQP4 crystal. The results demonstrated that AQP4-IgG recognizes AQP4 expressed in Sf9 and HEK-293F cells by immunofluorescence even though BN-PAGE analysis showed that AQP4 forms smaller aggregates when expressed in insect cells compared to mammalian cell lines. Notably, after AQP4 purification, from both insect and HEK-293F cells, no aggregates are detectable by BN-PAGE and AQP4-IgG binding is impaired in sandwich ELISA assays. All together these results indicate that 1) the MD prediction under analysis is not supported by experimental data and 2) the procedure to obtain AQP4 crystals might affect its native architecture and, as a consequence, MD simulations. In conclusion, given the complex nature of the AQP4 epitope, MD might not be the suitable for molecular medicine advances in NMO

    AQP4-independent TRPV4 modulation of plasma membrane water permeability

    Get PDF
    : Despite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way. Fluorescence-quenching water transport experiments in Aqp4-/- astrocytes revealed that cell swelling rate is significantly increased upon TRPV4 activation and in the absence of AQP4. The biophysical properties of TRPV4-dependent water transport were therefore assessed using the HEK-293 cell model. Calcein quenching experiments showed that chemical and thermal activation of TRPV4 overexpressed in HEK-293 cells leads to faster swelling kinetics. Stopped-flow light scattering water transport assay was used to measure the osmotic permeability coefficient (Pf, cm/s) and activation energy (Ea, kcal/mol) conferred by TRPV4. Results provided evidence that although the Pf measured upon TRPV4 activation is lower than the one obtained in AQP4-overexpressing cells (Pf of AQP4 = 0.01667 ± 0.0007; Pf of TRPV4 = 0.002261 ± 0.0004; Pf of TRPV4 + 4αPDD = 0.007985 ± 0.0006; Pf of WT = 0.002249 ± 0.0002), along with activation energy values (Ea of AQP4 = 0.86 ± 0.0006; Ea of TRPV4 + 4αPDD = 2.73 ± 1.9; Ea of WT = 8.532 ± 0.4), these parameters were compatible with a facilitated pathway for water movement rather than simple diffusion. The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels

    Cell Volume Regulation Mechanisms in Differentiated Astrocytes

    Get PDF
    The ability of astrocytes to control extracellular volume homeostasis is critical for brain function and pathology. Uncovering the mechanisms of cell volume regulation by astrocytes will be important for identifying novel therapeutic targets for neurological conditions, such as those characterized by imbalances to hydro saline challenges (as in edema) or by altered cell volume regulation (as in glioma). One major challenge in studying the astroglial membrane channels involved in volume homeostasis in cell culture model systems is that the expression patterns of these membrane channels do not resemble those observed in vivo. In our previous study, we demonstrated that rat primary astrocytes grown on nanostructured interfaces based on hydrotalcite-like compounds (HTlc) in vitro are differentiated and display molecular and functional properties of in vivo astrocytes, such as the functional expression of inwardly rectifying K+ channel (Kir 4.1) and Aquaporin-4 (AQP4) at the astrocytic microdomain. Here, we take advantage of the properties of differentiated primary astrocytes in vitro to provide an insight into the mechanism underpinning astrocytic cell volume regulation and its correlation with the expression and function of AQP4, Transient Receptor Potential Vanilloid 4 (TRPV4), and Volume Regulated Anion Channel (VRAC)

    The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System

    Get PDF
    The accumulation of adipose tissue represents one of the characteristics of obesity, increasing the risk of developing correlated obesity diseases such as cardiovascular disease, type 2 diabetes, cancer, and immune diseases. Visceral adipose tissue accumulation leads to chronic low inflammation inducing an imbalanced adipokine secretion. Among these adipokines, Adiponectin is an important metabolic and inflammatory mediator. It is also known that adipose tissue is influenced by Orexin-A levels, a neuropeptide produced in the lateral hypothalamus. Adiponectin and Orexin-A are strongly decreased in obesity and are associated with metabolic and inflammatory pathways. The aim of this review was to investigate the involvement of the autonomic nervous system focusing on Adiponectin and Orexin-A after bariatric surgery. After bariatric surgery, Adiponectin and Orexin-A levels are strongly increased independently of weight loss showing that hormone increases are also attributable to a rearrangement of metabolic and inflammatory mediators. The restriction of food intake and malabsorption are not sufficient to clarify the clinical effects of bariatric surgery suggesting the involvement of neuro-hormonal feedback loops and also of mediators such as Adiponectin and Orexin-A

    Short-Term Physiological Effects of a Very Low-Calorie Ketogenic Diet: Effects on Adiponectin Levels and Inflammatory States

    Get PDF
    Adipose tissue is a multifunctional organ involved in many physiological and metabolic processes through the production of adipokines and, in particular, adiponectin. Caloric restriction is one of the most important strategies against obesity today. The very low-calorie ketogenic diet (VLCKD) represents a type of caloric restriction with very or extremely low daily food energy consumption. This study aimed to investigate the physiological effects of a VLCKD on anthropometric and biochemical parameters such as adiponectin levels, as well as analyzing oligomeric profiles and cytokine serum levels in obese subjects before and after a VLCKD. Twenty obese subjects were enrolled. At baseline and after eight weeks of intervention, anthropometric and biochemical parameters, such as adiponectin levels, were recorded. Our findings showed a significant change in the anthropometric and biochemical parameters of these obese subjects before and after a VLCKD. We found a negative correlation between adiponectin and lipid profile, visceral adipose tissue (VAT), C-reactive protein (CRP), and pro-inflammatory cytokines such as tumor necrosis factor-a (TNF-a), which confirmed the important involvement of adiponectin in metabolic and inflammatory diseases. We demonstrated the beneficial short-term effects of a VLCKD not only in the treatment of obesity but also in the establishment of obesity-correlated diseases
    corecore