121 research outputs found

    Specklinia lugduno-batavae (Pleurothallidinae: Orchidaceae), a new species in the S-digitalis group

    Get PDF
    Specklinia lugduno-batavae from the Caribbean lowlands of Nicaragua and Costa Rica is formally described and illustrated. The new species belongs to the Specklinia digitalis group and can be recognised by the creeping habit, purple spotted abaxial surface of the leaf and the almost immaculate whitish cream flowers, which are produced in succession on a very short, flexuous inflorescence. The name honours Leiden University and the Hortus botanicus Leiden. The novelty is compared with its closest relatives, Specklinia digitalis, S. pisinna and S. succulenta.Plant science

    Deficit irrigation in Mediterranean environment. What lessons have we learnt from grapevine studies ?

    Get PDF
    Libro de Actas - X Simposium Hispano Português de Relaciones Hidricas, 2010Deficit irrigation techniques, implying that water is supplied at levels below full crop evapotranspiration throughout the growing season or in specific phenological stages, such as regulated deficit irrigation (RDI) or partial root drying (PRD), emerged as potential strategies to increase water savings with marginal decreases of yield and likely positive impact on fruit quality. Understanding the physiological and molecular bases for plant responses to mild to moderate water deficits is of utmost importance to modulate the appropriate balance between vegetative and reproductive development, to improve crop water-use efficiency and to control fruit quality. It is acknowledged that the timing and intensity of the response to soil and atmospheric water deficits, namely in what concerns stomatal control, depends greatly on the genotype. This has profound implications in irrigation management, in particular the timing and amount of irrigation to optimize source-sink relationships and achieve optimal fruit quality in each variety. Mild water deficits also exert direct and/or indirect (via the light environment in the cluster zone) effects on berry development and composition. A current research challenge is determining how the environment, in particular water deficits, regulates genes and proteins of the various metabolic pathways responsible for berry composition and therefore for wine qualit

    Grapevine under deficit irrigation: hints from physiological and molecular data

    Get PDF
    Background - A large proportion of vineyards are located in regions with seasonal drought (e.g. Mediterraneantype climates) where soil and atmospheric water deficits, together with high temperatures, exert large constraints on yield and quality. The increasing demand for vineyard irrigation requires an improvement in the efficiency of water use. Deficit irrigation has emerged as a potential strategy to allow crops to withstand mild water stress with little or no decreases of yield, and potentially a positive impact on fruit quality. Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize deficit irrigation management and identify the most suitable varieties to those conditions. Scope - How the whole plant acclimatizes to water scarcity and how short- and long-distance chemical and hydraulic signals intervene are reviewed. Chemical compounds synthesized in drying roots are shown to act as long-distance signals inducing leaf stomatal closure and/or restricting leaf growth. This explains why some plants endure soil drying without significant changes in shoot water status. The control of plant water potential by stomatal aperture via feed-forward mechanisms is associated with ‘isohydric’ behaviour in contrast to ‘anysohydric’ behaviour in which lower plant water potentials are attained. This review discusses differences in this respect between grapevines varieties and experimental conditions. Mild water deficits also exert direct and/or indirect (via the light environment around grape clusters) effects on berry development and composition; a higher content of skin-based constituents (e.g. tannins and anthocyanins) has generally being reported. Regulation under water deficit of genes and proteins of the various metabolic pathways responsible for berry composition and therefore wine quality are reviewed

    Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients

    Get PDF
    The anti-estrogen tamoxifen is characterized by a large variability in response, partly due to pharmacokinetic differences. We examined circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Pharmacokinetic analysis was performed in mice, dosed at six different times (24-h period). Tissue samples were used for mRNA expression analysis of drug-metabolizing enzymes. In patients, a cross-over study was performed. During three 24-h periods, after tamoxifen dosing at 8 a.m., 1 p.m., and 8 p.m., for at least 4 weeks, blood samples were collected for pharmacokinetic measurements. Differences in tamoxifen pharmacokinetics between administration times were assessed. The mRNA expression of drug-metabolizing enzymes showed circadian variation in mouse tissues. Tamoxifen exposure seemed to be highest after administration at midnight. In humans, marginal differences were observed in pharmacokinetic parameters between morning and evening administration. Tamoxifen Cmax and area under the curve (AUC)0–8 h were 20 % higher (P max was shorter (2.1 vs. 8.1 h; P = 0.001), indicating variation in absorption. Systemic exposure (AUC0–24 h) to endoxifen was 15 % higher (P < 0.001) following morning administration. The results suggest that dosing time is of marginal influence on tamoxifen pharmacokinetics. Our study was not designed to detect potential changes in clinical outcome or toxicity, based on a difference in the time of administration. Circadian rhythm may be one of the many determinants of the interpatient and intrapatient pharmacokinetic variability of tamoxifen

    Relationship Between Sunitinib Pharmacokinetics and Administration Time: Preclinical and Clinical Evidence

    Get PDF
    Background and Objective: Circadian rhythms may influence the pharmacokinetics of drugs. This study aimed to elucidate whether the pharmacokinetics of the orally administered drug sunitinib are subject to circadian variation. Methods: We performed studies in male FVB-mice aged 8–12 weeks, treated with single-dose sunitinib at six dosing times. Plasma and tissue samples were obtained for pharmacokinetic analysis and to monitor messenger RNA (mRNA) expression of metabolizing enzymes and drug transporters. A prospective randomized crossover study was performed in which patients took sunitinib once daily at 8 a.m., 1 p.m., and 6 p.m at three subsequent courses. Patients were blindly randomized into two groups, which determined the sequence of the sunitinib dosing time. The primary endpoint in both studies was the difference in plasma area under the concentration–time curve (AUC) of sunitinib and its active metabolite SU12662 between dosing times. Results: Sunitinib and SU12662 plasma AUC in mice followed an ~12-h rhythm as a function of administration time (p ≤ 0.04). The combined AUC from time zero to 10 h (AUC10) was 14–27 % higher when sunitinib was administered at 4 a.m. and 4 p.m. than at 8 a.m. and 8 p.m. Twenty-four-hour rhythms were seen in the mRNA levels of drug transporters and metabolizing enzymes. In 12 patients, sunitinib trough concentrations (Ctrough) were higher when the drug was taken at 1 p.m. or 6 p.m. than when taken at 8 a.m. (Ctrough-1 p.m. 66.0 ng/mL; Ctrough-6 p.m. 58.9 ng/mL; Ctrough-8 a.m. 50.7 ng/mL; p = 0.006). The AUC was not significantly different between dosing times. Conclusions: Our results indicate that sunitinib pharmacokinetics follow an ~12-h rhythm in mice. In humans, morning dosing resulted in lower Ctrough values, probably resulting from differences in elimination. This can have implications fo
    corecore