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ABSTRACT 

Deficit irrigation techniques, implying that water is supplied at levels below full crop evapotranspiration 

throughout the growing season or in specific phenological stages, such as regulated deficit irrigation 

(RDI) or partial root drying (PRD), emerged as potential strategies to increase water savings with 

marginal decreases of yield and likely positive impact on fruit quality. Understanding the physiological 

and molecular bases for plant responses to mild to moderate water deficits is of utmost importance to 

modulate the appropriate balance between vegetative and reproductive development, to improve crop 

water-use efficiency and to control fruit quality. It is acknowledged that the timing and intensity of the 

response to soil and atmospheric water deficits, namely in what concerns stomatal control, depends 

greatly on the genotype. This has profound implications in irrigation management, in particular the 

timing and amount of irrigation to optimize source-sink relationships and achieve optimal fruit quality in 

each variety. Mild water deficits also exert direct and/or indirect (via the light environment in the cluster 

zone) effects on berry development and composition. A current research challenge is determining how 

the environment, in particular water deficits, regulates genes and proteins of the various metabolic 

pathways responsible for berry composition and therefore for wine quality. 

 

CLIMATE CHANGE, VINEYARDS AND DEFICIT IRRIGATION 

 

Current projections by the International Panel for Climate Change (IPCC, 2007) predict that water 

scarcity will increase in the near future in many regions of the globe. Moreover, a large proportion of 

vineyards are located in regions with seasonal drought (e.g. climate of the Mediterranean type) where 

soil and atmospheric water deficits, together with high temperatures, exert large constraints in yield 

and quality. However, with enhanced pressure on water resources, the increasing demand for 

vineyard irrigation will only be met if there is an improvement in the efficiency of water use. Deficit 

irrigation techniques, where water is supplied at levels below full crop evapotranspiration (ETc) 

throughout the growing season or in specific phenological stages, such as regulated deficit irrigation 

(RDI) or partial root drying (PRD), emerged as potential strategies to increase water savings with 

marginal decreases of yield and likely positive impact on fruit quality (Ferreres and Soriano, 2007; 

Costa et al 2007; Chaves et al 2007; 2010).  

Under RDI, plant water status is maintained within pre-defined limits of deficit (with respect to 

maximum water potential) during certain phases of the seasonal development, normally when fruit 

growth is least sensitive to water reductions (Kang and Zhang, 2004). The rational underlying this 

practice is that optimization of numbers of fruits, fruit size and quality will be achieved by keeping 



grapevine vigour in balance with potential production. If water deficit is applied early in the season the 

effects will be achieved mostly through a reduction of berry cell division (McCarthy et al., 2002); if 

water deficits are imposed at later stages, then the major effect will be an inhibition of berry growth 

(Williams and Mathews, 1990). 

In PRD, roots are exposed to alternate drying and wetting cycles. Theoretically, roots of the watered 

side of soil will maintain favorable plant water relations, while dehydration in the other side will induce 

chemical signaling that will reach the leaves via the transpiration stream, reducing stomatal 

conductance and/or growth (Santos et al., 2003). This signaling (increased ABA concentration) follows 

sap flow restoration through the previously dried root system and as a consequence may be transient 

(less than 24 hours) (Dodd et al 2008). PRD irrigation may also have an impact on root growth, 

leading to increased root development in the deeper soil layers (Dry et al. 2000; Santos et al 2007). 

An increase in root hydraulic conductance, putatively resulting from aquaporin stimulation by ABA, and 

the induction of new secondary roots was also reported in fruit trees subjected to PRD (Kang and 

Zhang 2004).  

In what concerns PRD in grapevine, there are contrasting results in the literature, with several studies 

reporting no significant differences between PRD and DI (deficit irrigation considered as the control of 

PRD; where the same amount of water as in PRD is given, but divided by the two sides of the rooting 

zone), as for example  Bravdo et al. (2004) and Gu et al.(2004), whereas others show positive effects 

(Stoll et al 2000; Chaves et al 2007; 2010 see also Fig 1). These apparent contradictions may be 

related to differences in the intensity of the chemical signaling under PRD irrigation that seems to be 

dictated by the type of soil, the prevalent rainfall and evaporative demand in the region, as well as the 

frequency of switching irrigation from one side of the rootzone to the other (Dry et al 2001; Chaves et 

al 2007). Genotypic differences in stomatal sensing of water deficits or the delivery of ABA by the root-

stock, may also explain different results (Antolin et al., 2006; De la Hera et al., 2007). Drought 

sensitive varieties may respond better to PRD (Souza et al., 2005a). The type of soil will impact on the 

extent of soil water redistribution, which in turn will buffer dehydration in the dry rootzone. Bravdo 

(2005) suggests that hydraulic redistribution from deeper to shallower roots may prevent under field 

conditions the clear results obtained in potted plants subjected to PRD under split root systems 

(Davies et al., 2002). Dry (2005) also suggests that PRD may not be successful when soil porosity 

favors lateral spread of irrigation water or an insufficient volume of irrigation is applied at the time of 

the switch for restoration of the wet side to field capacity. There is also some evidence that in low vigor 

vineyards PRD is unable to induce better agronomical output than the conventional deficit irrigation 

strategy, since the growth inhibition more pronounced in PRD than in DI will decrease source (leaves) 

to sink ratio below the optimum, resulting in yield losses without any improvement in berry quality 

(Lopes et al, own results; see Fig 2). Finally, Sadras (2009) in a meta-analysis of a broad range of 

horticultural crops reported that in general there was no improvement in the irrigation water 

productivity (yield per unit irrigation water applied) under PRD, as compared to DI. 

 



 

Figure1: PRD pruning weight, yield, quality parameters and WUE as a function of DI, studied in two 

varieties, Moscatel and Castelão, during three years, in a sandy soil in Pegões. Central Portugal 

(redrawn from Chaves et al 2007). 

 

Figure 2: PRD and RDI pruning weight, yield, quality parameters and WUE as a function of DI, studied 

in the variety Aragonez during two years (2005 and 2006), in a loamy soil in Alentejo. South Portugal 

(Lopes et al unpub). 

 

PHYSIOLOGICAL BASES FOR PLANT RESPONSES TO MILD TO MODERATE WATER DEFICITS 
 
The use of deficit irrigation strategies rely on observations in several crops subjected to moderate 

water deficits that yield is not significantly reduced and quality of production may even increase under 

such conditions. Understanding the physiological and molecular bases for plant responses to mild to 
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moderate water deficits as it occurs under deficit irrigation is of utmost importance to modulate the 

appropriate balance between vegetative and reproductive development, to improve crop water-use 

efficiency and to control fruit quality.  

In general, grapevines are well-adapted to semi-arid climate like the Mediterranean, due to the large 

and deep root system and physiological drought avoidance mechanisms, such as an efficient stomatal 

control of transpiration and of xylem embolism (Lovisolo et al., 2002), and/or the ability to osmotically 

adjust (Rodrigues et al., 1993). Under mild to moderate water deficits (WD) stomata closure and 

growth inhibition are among the early plant responses, restricting water loss and carbon assimilation at 

the leaf and whole plant levels. The decline in photosynthetic rates generally takes place at lower pre-

dawn water potentials than the decline in stomatal conductance, giving rise to a (transient) increase in 

intrinsic water use efficiency (A/gs or WUEi) (Gaudillère et al., 2002; Souza et al., 2005b). This is 

reflected in a lower water use (WU) and higher WUE by the crop, an important aim of deficit irrigation 

strategies in vineyards (Chaves et al., 2007). Similarly, stomatal closure at midday, an important 

adaptation to high VPD in some species of xeric habitats (Maroco et al., 1997), may lead to an 

increase in WUEi when photosynthesis is maintained. This has been observed in grapevine (Souza et 

al 2003). 

When drought is combined with high air temperature and evaporative demand, as for example during 

sudden heat waves, dramatic reductions in plant carbon assimilation and a partial loss of canopy leaf 

area may occur (Flexas et al., 2002; Maroco et al., 2002; Chaves et al., 2007). Under such conditions, 

regulated deficit irrigation must be carefully surveyed in order to prevent negative impacts in grapevine 

yield and berry and wine quality. 

As for the signalling involved in plant response to deficit irrigation a great deal of evidence highlights 

the importance of ABA as root-sourced signal transported via the xylem and implicated in stomatal 

regulation of droughted plants (see review by Wilkinson and Davies, 2002). Even so, other compounds 

like the precursors of ABA (Jiang and Hartung, 2008), low concentration of cytokinins (Hansen and 

Dorffling, 2003), and changes in mineral composition or pH of the xylem (Jia and Davies, 2007) might 

also be implicated in the regulation of water use at the leaf level (recently reviewed by Schachtmann 

and Goodger, 2008). On the other hand, there is no clear picture of the relative importance of hydraulic 

and chemical signalling on plant response to PRD irrigation. There are studies indicating a marked 

decrease of gs in PRD grapevines relative to conventionally-irrigated vines, in spite of comparable 

shoot water status (Dry and Loveys, 1999; Du et al., 2006), therefore suggesting the involvement of a 

non-hydraulic signal in stomatal regulation. Several other studies, however, did not find evidence for a 

more marked stomatal closure in PRD than in DI grapevines (Souza et al., 2003; Rodrigues et al., 

2008). The higher water status of PRD plants may be derived from the observed restriction in 

vegetative growth of PRD plants (Santos et al., 2003 2005; Chaves et al., 2007), leading to lower plant 

water use and thus more water available in the soil near the root system.  

 

GENOTYPIC DEPENDENT RESPONSES TO WATER DEFICITS IN VITIS VINIFERA 

It is acknowledged that the timing and intensity of the response to soil and atmospheric water deficits, 

namely in what concerns stomatal control, depends greatly on the genotype. This has profound 

implications in irrigation management, in particular the timing and amount of irrigation to optimize 

source-sink relationships and achieve optimal fruit quality in each variety (Medrano et al., 2003; 



Chaves et al., 2007). Vitis vinifera L. is characterized by large genetic variability with several 

thousands of varieties being cultivated worldwide. However, most of those genotypes remain 

uncharacterized, which limits their use for breeding, for example to increase WUE or improve berry 

quality traits. 

Genotype related differences in WUE and water stress resistance may arise from constitutive 

differences in leaf gas-exchange, plant capacity to osmoregulate and plant hydraulics. Photosynthesis, 

stomatal conductance and WUEi were shown to vary with grapevine variety (Bota et al., 2001; Schultz 

2003; Soar et al., 2006). Still, variation in photosynthetic efficiency seems to be small (Bota et al., 

2001), suggesting that genotypic variation in WUE is largely linked to diversity in stomatal 

conductance, both under well-watered and water deficit conditions (Escalona et al., 1999; Gaudillère et 

al., 2002; Chaves and Oliveira, 2004). Under drought conditions, stomata seems to keep water flow 

within safe limits, therefore avoiding xylem embolism (Sperry et al., 2002). Higher stomata sensitivity to 

water deficits may compensate for higher vulnerability to cavitation under drought (Schultz, 2003). 

Leaf morpho-anatomy and related biochemistry (epicuticular wax composition, lipid composition, 

mesophyll thickness etc) may also play a role in explaining plant adaptation to water stress (Boyer et 

al., 1997). Differences among V. vinifera have been reported in these characteristics (Schultz, 1996). 

Grapevine is generally considered a “drought avoiding” species, with an efficient stomatal control over 

transpiration (Chaves et al., 2007; 2010; Shultz, 2003). However,  some genotypes have shown a 

better control of stomata than others in response to water deficits and accordingly have been classified 

as isohydric (drought avoiders or “pessimistic”); the others, showing lower control over stomatal 

aperture under water stress, were considered anisohydric, with an “optimistic” response (Schultz, 

2003; Soar et al., 2006). Schultz (2003) considered Grenache to be a nearly isohydric genotype 

showing a marked regulation of stomatal conductance to decreasing soil water, whereas Syrah 

exhibited a response closer to an anisohydric type. The same contrasting behavior between Grenache 

and Syrah in response to atmospheric moisture stress was found by Soar et al. (2006), who attributed 

the higher sensitivity of stomata in Grenache to the higher concentration of ABA in the xylem sap as 

compared with Syrah. He provided evidence of a midday increment of the expression of key genes 

involved in the ABA biosynthetic pathway, significantly higher in the leaves of Grenache than in Syrah.  

However, contradictory reports appeared in the literature showing that the same variety could behave 

differently depending on experimental conditions (see the reviews by Lovisolo et al., 2010 and Chaves 

et al 2010). For example, var. Syrah and Grenache that exhibited an anisohydric and near-isohydric 

behaviour, respectively, in field experiments (Schultz, 2003; Soar et al., 2006), did not display the 

same stomatal behaviour when experiments were performed with potted plants. 

Bearing in mind the available data, a classification of grapevine varieties as strict iso- or anisohydric 

may prove inappropriate. It seems plausible that stomatal responses to water deficits in a specific 

variety will vary according to the particular combination of the rootstock, the climate (VPD and 

temperature) and the intensity and duration of water deficits. 

 

BERRY GROWTH AND METABOLISM UNDER WATER DEFICITS 

Water deficits influence berry development, metabolism and final composition, and its timing and 

intensity dictate the extent of alterations occurring in wine colour and flavour. In general, mild water 

deficits were shown to have a positive impact on wine quality in red varieties (Bravdo et al., 1985). 



Under this context, deficit irrigation can provide the means to manipulate wine sensory characteristics. 

However, the effects of deficit irrigation on berry and wine quality will depend on the climatic 

characteristics during the growing season, the soil type, the grapevine variety and the timing of 

application (Santos et al., 2003, 2005).  

Transcriptional analysis of grape berries from vines subjected to moderate water deficits at the end-

ripening stage showed alterations on mRNA expression patterns particularly associated with cell wall, 

sugar and hormone metabolism (Deluc et al., 2007). The most profound alterations were related to 

ethylene, auxin and abscisic acid, but an enhancement of the expression of several genes of the 

phenylpropanoid pathway was also observed.  

The impact of water deficit on grape berry proteome was reported by Grimplet et al. (2009). These 

authors studied the alterations observed in the skin, pulp and seed proteomes of fully ripe berries 

when comparing water-deficit vines (no irrigation) with well-watered plants (irrigation from pre-véraison 

to the end of berry maturity) and showed that 7% of pericarp proteins were water-stress responsive. 

Using such an approach, we are currently studying the proteome dynamics of grapevines of the var. 

Aragonez (syn. Tempranillo) along berry development using three irrigation strategies. When 

comparing berries of full irrigated (FI) vines with the ones from deficit irrigated (RDI) and rainfed (NI) 

vines, several proteins were identified as stress responsive. One such protein was vacuolar invertase 

(GIN1), which was significantly down-regulated under NI and RDI when compared with FI conditions. 

These alterations were observed at green stage (pre-véraison) and véraison. Moreover, the peak of 

expression of this protein that was reported to occur at véraison by others (Deluc et al., 2007) was 

observed later in RDI than in FI berries. These results suggest that water availability modulates not 

only the amount, but also the timing of protein expression. It suggests as well that changes taking 

place very early on during berry development, such as at the green berry stage, may have a profound 

effect on the final berry maturity (Francisco et al., ‘unpubl. res.’). 

 

 

CONCLUSIONS 
Deficit irrigation is an efficient strategy to improve WUE and control vigour in grapevine, allowing an 

optimal grape maturity and therefore a high wine quality. It is now accepted that the efficiency of deficit 

irrigation (whatever the sub-type) in modulating WUE, growth and grape berry composition is 

dependent on the variety characteristics (namely its vigour and drought avoiding traits), the type of soil 

and the prevailing weather (rainfall and temperature). More in-depth and wider studies of varieties in 

response to environmental stresses are instrumental to the understanding of grapevine adaptation to 

more arid climates. Further knowledge on berry development, including the timing for the 

accumulation of various berry components, and their dependence on water availability, is critical for an 

optimal choice of irrigation strategy. Proteomic and transcriptomic studies are providing new avenues 

for that understanding. The data already available suggest that water deficits interact with 

development to alter the expression of genes responsible for some grape berry compounds and 

metabolite transporters. Although some of those changes seem to be transient it is plausible that they 

will have an impact on berry maturity and the final wine quality. 
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