1,298 research outputs found

    Where you live may make you old: The association between perceived poor neighborhood quality and leukocyte telomere length

    Get PDF
    Background: Strong evidence supports that living in disadvantaged neighborhoods has direct unfavorable impact on mental and physical health. However, whether it also has direct impact on cellular health is largely unknown. Thus we examined whether neighborhood quality was associated with leukocyte telomere length, an indicator of cellular aging. Methods: In May 2014, we extracted and analyzed baseline data from the Netherlands Study of Depression and Anxiety (NESDA), a large epidemiological study of individuals age between 18-65 years (n=2902). Telomere length was determined using quantitative polymerase chain reaction. Neighborhood quality was assessed using modified measures of perceived neighborhood disorder, fear of crime, and noise. We used multivariable linear regression models to examine association between perceived neighborhood quality and telomere length with comprehensive adjustment for individual and community characteristics related to socioeconomic and demographic status, urbanization level, mental and physical health, and lifestyle. Results: Compared to individuals who reported good neighborhood quality, the mean telomere length of those who reported moderate neighborhood quality was approximately 69 base pair shorter (β =-69.33, 95% CI: -119.49, -19.17, p= 0.007), and that of those who reported poor neighborhood quality were 174 base pair shorter (β =-173.80, 95% CI: -298.80, -49.01, p=0.006). For illustrative purposes, one could extrapolate these outcomes to 8.7 and 11.9 years in chronological age, respectively. Conclusion: We have established an association between perceived neighborhood quality and cellular aging over and above a range of individual attributes. Biological aging processes may be impacted by socioeconomic milieu

    A direct image of the obscuring disk surrounding an active galactic nucleus

    Get PDF
    Active galactic nuclei (AGN) are generally accepted to be powered by the release of gravitational energy in a compact accretion disk surrounding a massive black hole. Such disks are also necessary to collimate powerful radio jets seen in some AGN. The unifying classification schemes for AGN further propose that differences in their appearance can be attributed to the opacity of the accreting material, which may obstruct our view of the central region of some systems. The popular model for the obscuring medium is a parsec-scale disk of dense molecular gas, although evidence for such disks has been mostly indirect, as their angular size is much smaller than the resolution of conventional telescopes. Here we report the first direct images of a pc-scale disk of ionised gas within the nucleus of NGC 1068, the archetype of obscured AGN. The disk is viewed nearly edge-on, and individual clouds within the ionised disk are opaque to high-energy radiation, consistent with the unifying classification scheme. In projection, the disk and AGN axes align, from which we infer that the ionised gas disk traces the outer regions of the long-sought inner accretion disk.Comment: 14 pages, LaTeX, PSfig, to appear in Nature. also available at http://hethp.mpe-garching.mpg.de/Preprint

    Does publication bias inflate the apparent efficacy of psychological treatment for major depressive disorder? A systematic review and meta-analysis of US national institutes of health-funded trials

    Get PDF
    Background The efficacy of antidepressant medication has been shown empirically to be overestimated due to publication bias, but this has only been inferred statistically with regard to psychological treatment for depression. We assessed directly the extent of study publication bias in trials examining the efficacy of psychological treatment for depression. Methods and Findings We identified US National Institutes of Health grants awarded to fund randomized clinical trials comparing psychological treatment to control conditions or other treatments in patients diagnosed with major depressive disorder for the period 1972–2008, and we determined whether those grants led to publications. For studies that were not published, data were requested from investigators and included in the meta-analyses. Thirteen (23.6%) of the 55 funded grants that began trials did not result in publications, and two others never started. Among comparisons to control conditions, adding unpublished studies (Hedges’ g = 0.20; CI95% -0.11~0.51; k = 6) to published studies (g = 0.52; 0.37~0.68; k = 20) reduced the psychotherapy effect size point estimate (g = 0.39; 0.08~0.70) by 25%. Moreover, these findings may overestimate the "true" effect of psychological treatment for depression as outcome reporting bias could not be examined quantitatively. Conclusion The efficacy of psychological interventions for depression has been overestimated in the published literature, just as it has been for pharmacotherapy. Both are efficacious but not to the extent that the published literature would suggest. Funding agencies and journals should archive both original protocols and raw data from treatment trials to allow the detection and correction of outcome reporting bias. Clinicians, guidelines developers, and decision makers should be aware that the published literature overestimates the effects of the predominant treatments for depression

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Differences between patients' and clinicians' report of sleep disturbance: a field study in mental health care in Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of the study was to assess the prevalence of diagnosed insomnia and the agreement between patient- and clinician-reported sleep disturbance and use of prescribed hypnotic medication in patients in treatment for mental disorders.</p> <p>Methods</p> <p>We used three cross-sectional, multicenter data-sets from 2002, 2005, and 2008. Data-set 1 included diagnostic codes from 93% of all patients receiving treatment in mental health care in Norway (<it>N </it>= 40261). Data-sets 2 (<it>N </it>= 1065) and 3 (<it>N </it>= 1181) included diagnostic codes, patient- and clinician-reported sleep disturbance, and use of prescribed hypnotic medication from patients in 8 mental health care centers covering 10% of the Norwegian population.</p> <p>Results</p> <p>34 patients in data-set 1 and none in data-sets 2 and 3 had a diagnosis of insomnia as a primary or comorbid diagnosis. In data-sets 2 and 3, 42% and 40% of the patients reported sleep disturbance, whereas 24% and 13% had clinician-reported sleep disturbance, and 7% and 9% used hypnotics. Patients and clinicians agreed in 29% and 15% of the cases where the patient or the clinician or both had reported sleep disturbance. Positive predictive value (PPV) of clinicians' evaluations of patient sleep disturbance was 62% and 53%. When the patient reported sleep disturbance as one of their most prominent problems PPV was 36% and 37%. Of the patients who received hypnotic medication, 23% and 29% had neither patient nor clinician-rated sleep disturbance.</p> <p>Conclusion</p> <p>When patients meet the criteria for a mental disorder, insomnia is almost never diagnosed, and sleep disturbance is imprecisely recognized relative to the patients' experience of sleep disturbance.</p

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Geomorphological evolution of a debris‐covered glacier surface

    Get PDF
    There exists a need to advance our understanding of debris‐covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure‐from‐motion (UAV‐SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris‐covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a‐1; maximum 13.3 m a‐1). We combined elevation change data with local meteorological data and a sub‐debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a‐1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub‐decadal timescales, and open avenues for future research to explore glacier‐scale spatiotemporal patterns of debris remobilization

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    corecore