132 research outputs found
Exponents appearing in heterogeneous reaction-diffusion models in one dimension
We study the following 1D two-species reaction diffusion model : there is a
small concentration of B-particles with diffusion constant in an
homogenous background of W-particles with diffusion constant ; two
W-particles of the majority species either coagulate ()
or annihilate () with the respective
probabilities and ; a B-particle and a
W-particle annihilate () with probability 1. The
exponent describing the asymptotic time decay of
the minority B-species concentration can be viewed as a generalization of the
exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D
-state Potts model starting from a random initial condition : the
W-particles represent domain walls, and the exponent
characterizes the time decay of the probability that a diffusive "spectator"
does not meet a domain wall up to time . We extend the methods introduced by
Derrida, Hakim and Pasquier ({\em Phys. Rev. Lett.} {\bf 75} 751 (1995); Saclay
preprint T96/013, to appear in {\em J. Stat. Phys.} (1996)) for the problem of
persistent spins, to compute the exponent in perturbation
at first order in for arbitrary and at first order in
for arbitrary .Comment: 29 pages. The three figures are not included, but are available upon
reques
Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain
We study front propagation and diffusion in the reaction-diffusion system A
A + A on a lattice. On each lattice site at most one A
particle is allowed at any time. In this paper, we analyze the problem in the
full range of parameter space, keeping the discrete nature of the lattice and
the particles intact. Our analysis of the stochastic dynamics of the foremost
occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation
results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.
Solution of a one-dimensional stochastic model with branching and coagulation reactions
We solve an one-dimensional stochastic model of interacting particles on a
chain. Particles can have branching and coagulation reactions, they can also
appear on an empty site and disappear spontaneously.
This model which can be viewed as an epidemic model and/or as a
generalization of the {\it voter} model, is treated analytically beyond the
{\it conventional} solvable situations. With help of a suitably chosen {\it
string function}, which is simply related to the density and the
non-instantaneous two-point correlation functions of the particles, exact
expressions of the density and of the non-instantaneous two-point correlation
functions, as well as the relaxation spectrum are obtained on a finite and
periodic lattice.Comment: 5 pages, no figure. To appear as a Rapid Communication in Physical
Review E (September 2001
Duality in interacting particle systems and boson representation
In the context of Markov processes, we show a new scheme to derive dual
processes and a duality function based on a boson representation. This scheme
is applicable to a case in which a generator is expressed by boson creation and
annihilation operators. For some stochastic processes, duality relations have
been known, which connect continuous time Markov processes with discrete state
space and those with continuous state space. We clarify that using a generating
function approach and the Doi-Peliti method, a birth-death process (or discrete
random walk model) is naturally connected to a differential equation with
continuous variables, which would be interpreted as a dual Markov process. The
key point in the derivation is to use bosonic coherent states as a bra state,
instead of a conventional projection state. As examples, we apply the scheme to
a simple birth-coagulation process and a Brownian momentum process. The
generator of the Brownian momentum process is written by elements of the
SU(1,1) algebra, and using a boson realization of SU(1,1) we show that the same
scheme is available.Comment: 13 page
Emergence of pulled fronts in fermionic microscopic particle models
We study the emergence and dynamics of pulled fronts described by the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic
reaction-diffusion process A + A A$ on the lattice when only a particle is
allowed per site. To this end we identify the parameter that controls the
strength of internal fluctuations in this model, namely, the number of
particles per correlated volume. When internal fluctuations are suppressed, we
explictly see the matching between the deterministic FKPP description and the
microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a
Rapid Communicatio
Soliton ratchets
The mechanism underlying the soliton ratchet, both in absence and in presence
of noise, is investigated. We show the existence of an asymmetric internal mode
on the soliton profile which couples, trough the damping in the system, to the
soliton translational mode. Effective soliton transport is achieved when the
internal mode and the external force are phase locked. We use as working model
a generalized double sine-Gordon equation. The phenomenon is expected to be
valid for generic soliton systems.Comment: 4 pages, 4 figure
Generalized empty-interval method applied to a class of one-dimensional stochastic models
In this work we study, on a finite and periodic lattice, a class of
one-dimensional (bimolecular and single-species) reaction-diffusion models
which cannot be mapped onto free-fermion models.
We extend the conventional empty-interval method, also called
{\it interparticle distribution function} (IPDF) method, by introducing a
string function, which is simply related to relevant physical quantities.
As an illustration, we specifically consider a model which cannot be solved
directly by the conventional IPDF method and which can be viewed as a
generalization of the {\it voter} model and/or as an {\it epidemic} model. We
also consider the {\it reversible} diffusion-coagulation model with input of
particles and determine other reaction-diffusion models which can be mapped
onto the latter via suitable {\it similarity transformations}.
Finally we study the problem of the propagation of a wave-front from an
inhomogeneous initial configuration and note that the mean-field scenario
predicted by Fisher's equation is not valid for the one-dimensional
(microscopic) models under consideration.Comment: 19 pages, no figure. To appear in Physical Review E (November 2001
Deterministic ratchets: route to diffusive transport
The rectification efficiency of an underdamped ratchet operated in the
adiabatic regime increases according to a scaling current-amplitude curve as
the damping constant approaches a critical threshold; below threshold the
rectified signal becomes extremely irregular and eventually its time average
drops to zero. Periodic (locked) and diffusive (fully chaotic) trajectories
coexist on fine tuning the amplitude of the input signal. The transition from
regular to chaotic transport in noiseless ratchets is studied numerically.Comment: 9 pages, 5 figures, to be published in Phys. Rev.
Diffusion and Current of Brownian Particles in Tilted Piecewise Linear Potentials: Amplification and Coherence
Overdamped motion of Brownian particles in tilted piecewise linear periodic
potentials is considered. Explicit algebraic expressions for the diffusion
coefficient, current, and coherence level of Brownian transport are derived.
Their dependencies on temperature, tilting force, and the shape of the
potential are analyzed. The necessary and sufficient conditions for the
non-monotonic behavior of the diffusion coefficient as a function of
temperature are determined. The diffusion coefficient and coherence level are
found to be extremely sensitive to the asymmetry of the potential. It is
established that at the values of the external force, for which the enhancement
of diffusion is most rapid, the level of coherence has a wide plateau at low
temperatures with the value of the Peclet factor 2. An interpretation of the
amplification of diffusion in comparison with free thermal diffusion in terms
of probability distribution is proposed.Comment: To appear in PR
Effective rate equations for the over-damped motion in fluctuating potentials
We discuss physical and mathematical aspects of the over-damped motion of a
Brownian particle in fluctuating potentials. It is shown that such a system can
be described quantitatively by fluctuating rates if the potential fluctuations
are slow compared to relaxation within the minima of the potential, and if the
position of the minima does not fluctuate. Effective rates can be calculated;
they describe the long-time dynamics of the system. Furthermore, we show the
existence of a stationary solution of the Fokker-Planck equation that describes
the motion within the fluctuating potential under some general conditions. We
also show that a stationary solution of the rate equations with fluctuating
rates exists.Comment: 18 pages, 2 figures, standard LaTeX2
- …
