122 research outputs found

    Regulation of MMP-9 by p53 in first trimester cytotrophoblastic cells

    Get PDF
    BACKGROUND The matrix metalloproteinase (MMP) family is known to play a key role in tissue remodelling during embryonic development and in pathological conditions, such as cardiovascular disease, arthritis and cancer metastasis. It has been shown previously that p53 regulates positively or negatively the expression of different MMPs. Because of p53 overexpression in trophoblastic cells, and its potential role in regulating MMP-2 and MMP-9 expression in different cell lines, we hypothesized that the expression of MMP-9 could also be regulated by p53 in first trimester cytotrophoblasts (CTB). METHODS and RESULTS Transfection experiments in CTB demonstrated that wild-type p53 down-regulates the −670 (P < 0.001) but not the −531 and −90 human MMP-9 promoter/CAT reporter plasmid activity, whereas p53 mutants partially lost this repressive activity. However, endogenous p53 is not able to regulate MMP-9 expression in CTB. The presence of high molecular weight complexes of p53 in CTB suggests a potential mechanism of inactivation of p53 transcriptional activity towards MMPs in these cells. CONCLUSIONS Although p53 is mutated in trophoblast, it is functionally incompetent towards MMPs in these cell

    Physically-based deconvolution of impedance spectra for LSCF-based SOFC

    Get PDF
    A physically-based model for the interpretation of the impedance spectra of an anode-supported LSCF/GDC/YSZ/Ni:YSZ solid oxide fuel cell is presented in this work. The model locally describes transport and reaction phenomena within the cell components through mass conservation equations. The microstructural properties of the electrodes are predicted through numerical three-dimensional reconstruction of the microstructure, with input parameters obtained from the analysis of SEM pictures of each layer. Simulations show that the model reproduces impedance spectra obtained in different operating conditions with the same set of fitting parameters, comprising material-specific kinetic constants and electrochemical capacitances, which fairly agree with independent literature data and a previous analysis of the spectra through DRT. The model allows for the deconvolution and quantification of the characteristic resistance and frequency of the different physical processes that build up the impedance of the cell. In particular, 7 processes are identified: charge-transfer reactions between LSCF/GDC, GDC/YSZ and Ni/YSZ interfaces appear in the high-frequency range, the medium-frequency feature is due the oxygen reduction reaction and the gas diffusion in the anode, while the low-frequency arc is mainly due to the gas conversion in the anodic channel. An additional low frequency contribution (&lt; 1Hz), not considered in the model, is observed and tentatively attributed to the adsorption of oxygen onto the LSCF surface. Simulation results suggest that more efforts must be dedicated to characterize and improve the oxygen transfer at the LSCF/GDC and GDC/YSZ interfaces. The study shows that a quantitative interpretation of impedance spectra is possible with a reduced number of fitting parameters when a physically-based approach is adopted, making the model an attractive tool for diagnostic purposes

    Modulation of Contact System Proteases by Glycosaminoglycans SELECTIVE ENHANCEMENT OF THE INHIBITION OF FACTOR XIa

    Get PDF
    Abstract We investigated the influence of dextran sulfate, heparin, heparan sulfate, and dermatan sulfate on the inhibition of FXIa (where FXIa is activated factor XI, for example), FXIIa, and kallikrein by C1 inhibitor, α1-antitrypsin, α2-antiplasmin, and antithrombin III. The second-order rate constants for the inhibition of FXIa by C1 inhibitor, α1-antitrypsin, α2-antiplasmin, and antithrombin III, in the absence of glycosaminoglycans, were 1.8, 0.1, 0.43, and 0.32 × 103 M−1 s−1, respectively. The rate constants of the inactivation of FXIa by C1 inhibitor and by antithrombin III increased up to 117-fold in the presence of glycosaminoglycans. These data predicted that considering the plasma concentration of the inhibitors, C1 inhibitor would be the main inhibitor of FXIa in plasma in the presence of glycosaminoglycans. Results of experiments in which the formation of complexes between serine protease inhibitors and FXIa was studied in plasma agreed with this prediction. Glycosaminoglycans did not enhance the inhibition of α-FXIIa, β-FXIIa, or kallikrein by C1 inhibitor. Thus, physiological glycosaminoglycans selectively enhance inhibition of FXIa without affecting the activity of FXIIa and kallikrein, suggesting that glycosaminoglycans may modulate the biological effects of contact activation, by inhibiting intrinsic coagulation without affecting the fibrinolytic potential of FXIIa/kallikrein

    A universal anti-Xa assay for rivaroxaban, apixaban, and edoxaban measurements: method validation, diagnostic accuracy and external validation.

    Get PDF
    A universal anti-Xa assay for the determination of rivaroxaban, apixaban and edoxaban drug concentrations would simplify laboratory procedures and facilitate widespread implementation. Following two pilot studies analysing spiked samples and material from 698 patients, we conducted a prospective multicentre cross-sectional study, including 867 patients treated with rivaroxaban, apixaban or edoxaban in clinical practice to comprehensively evaluate a simple, readily available anti-Xa assay that would accurately measure drug concentrations and correctly predict relevant levels in clinical practice. Anti-Xa activity was measured by an assay calibrated with low-molecular-weight heparin (LMWH) in addition to ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). As an external validation, LMWH-calibrated anti-Xa activity was also determined in nine external laboratories. The LMWH-calibrated anti-Xa activity correlated strongly with rivaroxaban, apixaban or edoxaban drug levels [r &lt;sub&gt;s&lt;/sub&gt; = 0·98, 95% confidence interval (CI) 0·98-0·98]. The sensitivity for the clinically relevant cut-off levels of 30, 50 and 100 µg/l was 96·2% (95% CI 94·4-97·4), 96·4% (95% CI 94·4-97·7) and 96·7% (95% CI 94·3-98·1) respectively. Concordant results were obtained in the external validation study. In conclusion, a universal, LMWH-calibrated anti-Xa assay accurately measured rivaroxaban, apixaban and edoxaban concentrations and correctly predicted relevant drug concentrations in clinical practice

    Prothrombinase-Induced Clotting Time to Measure Drug Concentrations of Rivaroxaban, Apixaban, and Edoxaban in Clinical Practice: A Cross-Sectional Study.

    Get PDF
    Prothrombinase-induced clotting time (PiCT) is proposed as a rapid and inexpensive laboratory test to measure direct oral anticoagulant (DOAC) drug levels. In a prospective, multicenter cross-sectional study, including 851 patients, we aimed to study the accuracy of PiCT in determining rivaroxaban, apixaban, and edoxaban drug concentrations and assessed whether clinically relevant drug levels could be predicted correctly. Citrated plasma samples were collected, and the Pefakit® PiCT was utilized. Ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to measure drug concentrations. Cut-off levels were established using receiver-operating characteristics curves. We calculated sensitivities and specificities with respect to clinically relevant drug concentrations. Spearman's correlation coefficient between PiCT and drug concentrations was 0.85 in the case of rivaroxaban (95% CI 0.82, 0.88), 0.66 for apixaban (95% CI 0.60, 0.71), and 0.78 for edoxaban (95% CI 0.65, 0.86). The sensitivity to detect clinically relevant drug concentrations was 85.1% in the case of 30 µg L-1 (95% CI 82.0, 87.7; specificity 77.9; 72.1, 82.7), 85.7% in the case of 50 µg L-1 (82.4, 88.4; specificity 77.3; 72.5, 81.5), and 85.1% in the case of 100 µg L-1 (80.9, 88.4; specificity 73.2%; 69.1, 76.9). In conclusion, the association of PiCT with DOAC concentrations was fair, and the majority of clinically relevant drug concentrations were correctly predicted

    Determination of Anti-Xa Inhibitor Plasma Concentrations Using a Universal Edoxaban Calibrator

    Get PDF
    A universal calibrator for the determination of all anti-Xa inhibitors would support laboratory processes. We aimed to test the clinical performance of an anti-Xa assay utilizing a universal edoxaban calibrator to determine clinically relevant concentrations of all anti-Xa inhibitors. Following a pilot study, we enrolled 553 consecutive patients taking rivaroxaban, edoxaban, or apixaban from nine study centers in a prospective cross-sectional study. The Technochrom®^{®} anti-Xa assay was conducted using the Technoview®^{®} edoxaban calibrator. Using ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), anti-Xa inhibitor drug concentrations were determined. Sensitivities and specificities to detect three clinically relevant drug concentrations (30 µgL1^{-1}, 50 µgL1^{-1}, 100 µgL1^{-1}) were determined. Overall, 300 patients treated with rivaroxaban, 221 with apixaban, and 32 with edoxaban were included. The overall correlation coefficient (rs_{s}) was 0.95 (95% CI 0.94, 0.96). An area under the receiver operating characteristic curve of 0.96 for 30 µgL1^{-1}, 0.98 for 50 µgL1^{-1}, and 0.99 for 100 µgL1^{-1} was found. The sensitivities were 92.3% (95% CI 89.2, 94.6), 92.7% (89.4, 95.1), and 94.8% (91.1, 97.0), respectively (specificities 82.2%, 93.7%, and 94.4%). In conclusion, the clinical performance of a universal, edoxaban-calibrated anti-Xa assay was solid and most drug concentrations were predicted correctly

    Accuracy of a Single, Heparin-Calibrated Anti-Xa Assay for the Measurement of Rivaroxaban, Apixaban, and Edoxaban Drug Concentrations: A Prospective Cross-Sectional Study

    Full text link
    Background: Applying a single anti-Xa assay, calibrated to unfractionated heparin to measure rivaroxaban, apixaban, and edoxaban would simplify laboratory procedures and save healthcare costs. Aim: We hypothesized that a heparin-calibrated anti-Xa assay would accurately measure rivaroxaban, apixaban, and edoxaban drug concentrations and correctly predict clinically relevant drug levels. Methods: This analysis is part of the Simple-Xa study, a prospective multicenter cross-sectional study conducted in clinical practice. Patients treated with rivaroxaban, apixaban, or edoxaban were included. Anti-Xa activity was measured using the Siemens INNOVANCE® Heparin assay. Drug concentrations were determined using ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cut-off levels were determined in a derivation dataset (50% of patients) and sensitivities and specificities were calculated in a verification dataset (50% of patients). Results: Overall, 845 patients were available for analysis. Correlation coefficients (r s ) between the heparin-calibrated anti-Xa assay and drug concentrations were 0.97 (95% CI 0.97, 0.98) for rivaroxaban, 0.96 (0.96, 0.97) for apixaban, and 0.96 (0.94, 0.99) for edoxaban. The area under the receiver operating characteristics curve (ROC) was 0.99 for all clinically relevant drug concentrations. In the verification dataset, the sensitivity was 94.2% (95% CI 90.8-96.6) for 30 μg L-1, 95.8% (92.4-98.0) for 50 μg L-1, and 98.7% (95.5-99.9) for 100 μg L-1. Specificities were 86.3% (79.2-91.7), 89.8% (84.5-93.7), and 88.7% (84.2-92.2), respectively. Conclusion: In a large prospective study in clinical practice, a strong correlation of heparin-calibrated anti-Xa measurements with LC-MS/MS results was observed and clinically relevant drug concentrations were predicted correctly. Keywords: anti-Xa assay; diagnostic accuracy; direct oral anticoagulants; laboratory monitoring; rivaroxaban

    Production and reliability oriented SOFC cell and stack design

    Get PDF
    The paper presents an innovative development methodology for a production and reliability oriented SOFC cell and stack design aiming at improving the stacks robustness, manufacturability, efficiency and cost. Multi-physics models allowed a probabilistic approach to consider statistical variations in production, material and operating parameters for the optimization phase. A methodology for 3D description of spatial distribution of material properties based on a random field models was developed and validated by experiments. Homogenized material models on multiple levels of the SOFC stack were established. The probabilistic models were related to the experimentally obtained properties of base materials to establish a statistical relationship between the material properties and the most relevant load effects. Software algorithms for meta models that allow the detection of relationships between input and output parameters and to perform a sensitivity analysis were developed and implemented. The capabilities of the methodology is illustrated on two practical cases

    Regulation of MMP-9 by p53 in first trimester cytotrophoblastic cells

    Get PDF
    BACKGROUND: The matrix metalloproteinase (MMP) family is known to play a key role in tissue remodelling during embryonic development and in pathological conditions, such as cardiovascular disease, arthritis and cancer metastasis. It has been shown previously that p53 regulates positively or negatively the expression of different MMPs. Because of p53 overexpression in trophoblastic cells, and its potential role in regulating MMP-2 and MMP-9 expression in different cell lines, we hypothesized that the expression of MMP-9 could also be regulated by p53 in first trimester cytotrophoblasts (CTB). METHODS and RESULTS: Transfection experiments in CTB demonstrated that wild-type p53 down-regulates the -670 (P < 0.001) but not the -531 and -90 human MMP-9 promoter/CAT reporter plasmid activity, whereas p53 mutants partially lost this repressive activity. However, endogenous p53 is not able to regulate MMP-9 expression in CTB. The presence of high molecular weight complexes of p53 in CTB suggests a potential mechanism of inactivation of p53 transcriptional activity towards MMPs in these cells. CONCLUSIONS: Although p53 is mutated in trophoblast, it is functionally incompetent towards MMPs in these cells
    corecore