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BACKGROUND: The matrix metalloproteinase (MMP) family is known to play a key role in tissue remodelling
during embryonic development and in pathological conditions, such as cardiovascular disease, arthritis and cancer
metastasis. It has been shown previously that p53 regulates positively or negatively the expression of different
MMPs. Because of p53 overexpression in trophoblastic cells, and its potential role in regulating MMP-2 and
MMP-9 expression in different cell lines, we hypothesized that the expression of MMP-9 could also be regulated by
p53 in first trimester cytotrophoblasts (CTB). METHODS and RESULTS: Transfection experiments in CTB demon-
strated that wild-type p53 down-regulates the 2670 (P < 0.001) but not the 2531 and 290 human MMP-9 promoter/
CAT reporter plasmid activity, whereas p53 mutants partially lost this repressive activity. However, endogenous p53
is not able to regulate MMP-9 expression in CTB. The presence of high molecular weight complexes of p53 in CTB
suggests a potential mechanism of inactivation of p53 transcriptional activity towards MMPs in these cells.
CONCLUSIONS: Although p53 is mutated in trophoblast, it is functionally incompetent towards MMPs in these cells.
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Introduction

Cytotrophoblastic cells (CTB) of the human placenta proliferate,

migrate and invade the uterus during pregnancy to allow implan-

tation and placentation (Red-Horse et al., 2004). The invasive

property of CTB is limited in time and in space and depends

to their ability to secrete proteases. Matrix metalloproteinases

(MMPs) are involved in this invasive process since phenanthro-

line, a non-specific inhibitor of MMPs, inhibits invasion of

matrigel by CTB (Bischof et al., 1995). The MMP family is

known to be essential for degradation of nearly all components

of the extracellular matrix (ECM). This confers an important

role to these enzymes in various physiological and pathological

processes such as embryonic development (Behrendsten and

Werb, 1997), inflammation (Cowland and Borregaard, 1999),

infection (Giraudon et al., 1998), vascular (Jones et al., 2003;

Kuzuya and Iguchi, 2003) and degenerative diseases (Back-

strom et al., 1996), tumour invasion (Polette et al., 2004) and

metastasis (Nagase and Woessner, 1999; Vu and Werb, 2000;

Chang and Werb, 2001). MMP-9 represents the largest

member and one of the most studied for its involvement in

the invasiveness of trophoblasts (Librach et al., 1991; Polette

et al., 1994; Shimonovitz et al., 1994; Hurskainen et al.,

1996; Xu et al., 2000). During early stages of pregnancy, the

level of expression of MMP-9 (gelatinase B) is very low in tro-

phoblasts and increases gradually after the 8th week. Thus,

expression of MMP-9 coincides with the maximal invasive

potential of CTB and suggests that MMP-9 is implicated in

the invasiveness of these cells (Cohen et al., 2006).

MMP-9 is encoded by a 7.7 kb gene comprising 13 exons

and 12 introns (Van den Steen et al., 2002). The 2.2 kb promo-

ter sequence of the human (h)MMP-9 contains several consen-

sus motifs for regulatory elements as shown in Fig. 1. Several

cis-regulatory regions appear to act synergistically in basal and

induced MMP-9 gene expression. For example, the AP-1

element at position 279 bp plays a dominant role in transcrip-

tional activation of MMP-9; it is necessary but not sufficient for

basal or induced MMP-9 gene transcription and requires

specific interactions with nuclear factor kB and stimulating

protein-1 elements at positions 2600 and 2563, respectively

(Sato and Seiki, 1993; Bischof et al., 2003).

The tumour suppressor p53 is a transcription factor that acti-

vates transcription of its target genes by binding to a specific
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consensus DNA sequence consisting of two copies of a 10 bp

DNA motif 50-PuPuPuC(A/T)(T/A)GPyPyPy-30 separated by

0–13 bp (El-Deiry et al., 1992). Wild-type (wt) p53, but not

mutants of p53, can efficiently bind the p53-binding element on

target genes. The promoter of MMP-2 contains a p53-binding

element that mediates activation of MMP-2 gene transcription

(Bian and Sun, 1997). Furthermore, p53 can also repress

expression of genes lacking the p53-binding site in their promoter

by interacting with other transcription factors (Subler et al., 1992;

Donehower and Bradley, 1993; Werner et al., 1996; Sun et al.,

1999; Ala-aho et al., 2002). Most mutants of p53 have lost this

wt-p53 repressive ability. It has been shown that wt-p53 is able

to potently inhibit expression of MMP-13 (Sun et al., 2000;

Ala-aho et al., 2002), MMP-1 (Sun et al., 1999; Sun et al.,

2004) and MMP-9 (Liu et al., 2006; Meyer et al., 2005).

Immunohistochemical studies of first trimester trophoblast have

shown that p53 is detectable in CTB and in syncytiotrophoblast

(Haidacher et al., 1995; Marzusch et al., 1995; Cohen et al.,

2007). Since wt-p53 is generally not detectable by immunohisto-

chemistry due to its short half-life, Marzusch et al. (1995)

suggested that p53 might be overexpressed in these cells and

contribute to excessive trophoblastic proliferation in normal

placentation. We recently demonstrated the presence of high

molecular complexes of p53 (HMWC) in both cytoplasmic and

nuclear fractions of CTB which could be involved in p53

stabilization in these cells (Cohen et al., 2007). The aim of this

study was to determine the potential role of p53 in regulating

MMP-9 expression in CTB.

Materials and Methods

Dulbecco’s modified Eagle’s medium (DMEM) and antibiotics mixture

(penicillin and streptomycin) were the products of Invitrogen (Basel,

Switzerland). Fetal bovine serum (FBS) was from Biochrom AG

(Oxoid AG, Basel, Switzerland). Etoposide and poly-L-ornithine

(PLO) were from Sigma (Buchs, Switzerland). Pifithrin-alpha (PFT-a)

was from Alexis Biochemicals (Lausanne, Switzerland). Lysis buffer

5X was from Promega (Catalys AG, Wallisellen, Switzerland).

Bio-Rad protein assay, Trans-Blot transfer medium were from

Bio-Rad (Munich, Germany). Hybond-Nþmembrane, Rainbow-stained

protein molecular weight markers and enhanced chemiluminescence

(ECL) western blotting detection system were from Amersham Bio-

sciences (Buckinghamshire, UK). Sheep polyclonal MMP-9 antibody

was from The Binding Site (Birmingham, UK). Goat polyclonal

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) specific anti-

body and mouse monoclonal p53 specific antibody used for western

blotting were from Santa Cruz (CA, USA). Mouse monoclonal wt-p53

specific antibody (clone Pab1620) and mouse monoclonal p53 antibody

(clone Pab240) were from Oncogene (Stehelin, Basel, Switzerland). p53

small interfering RNA (siRNA) and Transpass R2 transfection reagent

were from New England Biolab (Beverly, USA).

Cell culture

Placental tissue was obtained from patients undergoing a legal abortion

during the first trimester (7–12 weeks of pregnancy). Informed written

consent was obtained from all patients before their inclusion in

the study, for which approval was obtained from the local ethics

committee.

CTB were isolated from first trimester placentas as described

(Bischof et al., 1995). In brief, fresh tissue specimens were isolated

and washed several times in sterile hanks balanced salt solution

(HBSS). Tissue was then enzymatically digested four times for

20 min at 378C (0.25% trypsin, 0.25 mg/ml DNase I). Single cells

were collected, trypsin cocktail was neutralized with FBS and cells

are then resuspended in DMEM. This cell suspension was filtered

through a 100 mm filter, then laid onto a Percoll gradient (70% to

5% Percoll diluted with HBSS) and centrifuged for 25 min at

1200g. The 30–45% bands containing CTB were collected, washed

and suspended in DMEM. Cells were then immunopurified to elimin-

ate mononuclear cells from the lymphomyloide lineage. Typically, our

CTB preparations were 98% cytokeratin-7 positive with 2% contami-

nation with vimentin positive cells (Bischof et al., 1995).

Treatment of CTB

Half of the cells were treated with a p53 inducer, etoposide (20 mM) or

a p53 inhibitor, PFT-a (30 mM), in serum-free medium for 24 h. The

other half of the cells were untreated and used as control in serum-free

medium.

Plasmids

The 2670, 2531 and 290 hMMP-9 promoter/chloramphenicol acet-

yltransferase (CAT) reporter plasmid used in this study were a gener-

ous gift from Prof. Sato (Kanazawa University, Ishikawa, Japan) and

have been described previously (Sato and Seiki, 1993). Wild-type

and mutant p53 (p53-175H: Arg!His substitution at position 175

and p53-143A: Val!Ala substitution at position 143) expression plas-

mids were obtained from Prof. Vogelstein at Johns Hopkins Oncology

Center and have been described previously (Baker et al., 1990).

Transfection

Cells were seeded into plates 24 h prior to transfection. PLO was used to

transiently transfect CTB. The culture medium was replaced with 1 ml

of transfection cocktail (2 mg PLO/mg plasmid in culture medium

without FBS) and the cells incubated for 6 h at 378C, in 5% CO2.

The transfection cocktail was then replaced by 1 ml of 30% (v/v)

dimethylsulphoxide (DMSO) in DMEM supplemented with 1% (v/v)

FBS for 4 min at room temperature to shock the cells. The DMSO

medium was aspirated and the wells were washed with medium

before continuing incubation. Culture medium was changed after 24 h

and cells harvested 24 h later by lysis with the reporter lysis buffer.

CAT activity was run according to the Promega’s protocol and radioac-

tivity counted in Tri-Carb 1900TR (Packard, Zurich, Switzerland).

To study the effects of wt-p53 and some p53 mutants on 2670

hMMP-9 promoter activity, 1.5 million CTB per well were seeded in

12-well plates and cotransfected with 3 mg of 2670 hMMP-9 promoter/
CAT reporter plasmid and 0.5 mg of mutant or wt-p53 constructs.

For determination of the minimal promoter sequence required for

p53 repression, 1.5 million CTB per well were plated in 12-well plates

Figure 1: MMP-9 promoter.
Starting from the transcription initiation site and moving upstream
towards the 50 end of the promoter, one observes a TATA motif like
sequence at position 229 bp, correlated with the transcriptional
start site, at positions 279, 2209, 2533 and 21652 bp four
12-O-tetradecanoyl-phorbol-13-acetate or activator protein-1 (AP-1)
binding sites, at positions 2328 and 2600 bp two nuclear factor
kB (NFkB) motifs, at position 2474 bp a consensus sequence for a
transforming growth factor-b inhibitory element (TIE), at positions
2541 and 2554 two polyoma enhancer A binding protein-3
(PEA3) elements, and at position 2563 bp a consensus sequence for
the binding of nuclear stimulating protein-1 (Sp1).
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for 24 h and transfected with 3 mg of 2670, 2531 or –90 hMMP-9

promoter/CAT reporter plasmid and 0.5 mg wt-p53 or control vector.

To study the effects of etoposide on 2670 hMMP-9 promoter

activity, 3 million CTB per well were plated in six-well plates and

then transfected with 5 mg of 2670 hMMP-9 promoter/CAT reporter

plasmid. After 24 h, the medium was replaced and half of the cells

were treated with etoposide (20 mM) for 24 h. The other untreated

cells were used as control.

To study the effects of exogenous p53 on HMWC formation in

trophoblast, 20 million CTB per dish were plated in 100 mm dish

and then transfected with 20 mg of wt-p53 or control vector.

p53 silencing RNA

To study the effect of endogenous p53 on MMP-9 expression, CTB or

MCF-7 cells (human breast adenocarcinoma cell line) were plated in

six-well plates and then transfected with p53 short-cut siRNA mix

or control siRNA (25 nM). Transpass R2 transfection reagent was

used to transfect cells, as described by the manufacturer.

Zymography

Proteolytic activity of culture supernatants were assayed using gelatin-

substrate gel electrophoresis as described previously (Martelli et al.,

1993). Zymograms were scanned with an Epson Perfection 1 200

Photo scanner and the surface of the digestion bands measured by

the Kodak 1D Image analysis software (Kodak, Rochester, NY, USA).

ELISA for MMP-2 and MMP-9

MMP-2 (gelatinase A) and MMP-9 concentrations were measured in the

cell supernatants using our own enzyme-linked immunosorbent assay

(ELISA) as described and validated elsewhere (Meisser et al., 1999).

Subcellular fractionation

Plated CTB were rinsed in HBSS, trypsinized and collected by centrifu-

gation (800g, 10 min). The pelleted cells were rinsed in ice-cold

phosphate-buffered saline (PBS) buffer (0.01 M sodium phosphate,

138 mM NaCl and 2.7 mM KCl, pH 7.4) and collected by centrifu-

gation. The pellets were resuspended in 20 volumes of 10 mM Hepes

buffer containing 1.5 mM MgCl2, 10 mM NaCl and 0.5 mM dithiotrei-

tol (DTT) and a Roche protease inhibitor cocktail tablet, pH 7.9. Cells

suspension were incubated in ice for 30 min and collected by centrifu-

gation. The pellet was resuspended in 10 volumes of 10 mM Hepes con-

taining 1.5 mM MgCl2, 10 mM NaCl and 0.5 mM DTT, 0.5% nonidet

P40 (NP40) and homogenized gently by passing the suspension at least

five times through a 20 gauge needle fitted to a syringe. Nuclear fraction

was obtained by centrifugation at 1000g, 10 min. The supernatant was

collected for cytosolic analysis. Nuclei were resuspended by gentle

homogenization in 0.88 M sucrose and 3 mM MgCl2 and centrifuged

at 2500g for 20 min to remove cell debris. The pellet was resuspended

in PBS buffer and stored at 2808C until use. Assay for the cytoplasmic

marker enzyme lactate dehydrogenase (LDH) was performed on each

nuclear fraction to determine cytoplasmic contamination. No LDH

activity was detected in our fractions.

LDH assay

Nuclear fraction (4 mg of protein) was incubated in sodium phosphate

buffer, 0.1 M, pH 7, with sodium pyruvate (0.125 mg) and NADH

(0.125 mg) for 30 min. The assay measured the rate of NADH absor-

bance decrease at 340 nm.

Western blot

Proteins (40 mg) were not reduced but were denatured by boiling at

1008C for 10 min. Samples were then subjected to sodium dodecyl

sulphate–polyacrylamide gel electrophoresis using a 10% running

gel. Rainbow-stained molecular weight markers were used as stan-

dards. Proteins were electro-transferred to nitrocellulose membranes.

Non-specific binding was blocked for 30 min at 378C with 5% pow-

dered milk in 0.2% NP40 buffer. p53 specific antibodies (diluted

1/1000) were incubated overnight with the nitrocellulose membrane.

After washing, the membranes were incubated with the appropriate

horse-radish peroxidase-linked secondary antibody (2 h, room temp-

erature). After washing, the bands were revealed by chemilumine-

scence (ECL detection kit). Films were scanned with an Epson

Figure 2: Repression of human (h)MMP-9 promoter activity by wild-
type (wt)-p53 and mutants p53.
CTB were cotransfected with 6 mg of 2670 hMMP-9 CAT reporter
plasmid and 1 mg of mutant, wt-p53 constructs or control vector.
After 48 h, cells were harvested and CAT activity was assayed and
normalized to the amount of protein in the cellular lysates. Three inde-
pendent transfections, each run in triplicate, were performed and the
results expressed as mean+SEM. Relative promoter activities were
calculated by arbitrarily setting the activity of the control as 100.
Paired Student’s t-test was used to compare cells transfected with
p53 constructs versus control vector.

Figure 3: Determination of the minimal promoter sequence required
for p53 repression.
CTB were transfected with 3 mg of 2670, 2531 or 290 hMMP-9
promoter/CAT reporter plasmid and 0.5 mg wt-p53 or control
vector. After 48 h, cells were harvested and CAT activity was
assayed and normalized to the amount of proteins in the cellular
lysates. Three independent experiments, each run in triplicate, were
performed and the results expressed as mean+SEM. Paired Student’s
t-test was used to compare transfected cells with wt-p53 versus control
plasmids.

p53, matrix metalloproteinases and cytotrophoblasts

2275



Perfection 1 200 Photo scanner and the surface of the bands measured

by the Kodak 1D Image analysis software (Kodak).

Statistics

Data were analysed using paired Student’s t-test and a P-value of

,0.05 was considered statistically significant.

Results

Regulation of hMMP-9 promoter by p53 in CTB

Transcription assays were performed with CAT reporter driven

by 2670 promoter of the hMMP-9 gene cotransfected with the

expression vector of p53 in CTB. As shown in Fig. 2, wt-p53 and

-p53 mutants commonly found in human cancer, p53-175H and

p53-143A, are able to down-regulate 2670 promoter activity.

CAT activity is significantly reduced by wt-p53 and by

p53-175H (�50%), whereas p53-143A has partially lost the

ability to repress the hMMP-9 promoter activity (�25%). In

order to map the site(s) responsible for p53-mediated repression,

CTB have been cotransfected with wt-p53 expression plasmid

or control vector and various 50 deletions of hMMP-9/CAT

promoter. As shown in Fig. 3, only 2670 hMMP-9 CAT activity

is significantly inhibited by wt-p53. So, cis-acting elements

involved in the p53-induced down-regulation of hMMP-9

gene expression are localized between 2670 and 2531 bp of

the 50 flanking region of hMMP-9 gene.

Endogenous p53 regulation of MMP

We next examined the effect of endogenous p53 protein on

MMP-9 expression. To this end, CTB were treated with an

inducer of p53, etoposide, or with a specific inhibitor of

p53, PFT-a (Komarov et al., 1999), or were transfected with

p53siRNA. The effects on MMP-9 expression, secretion or pro-

moter activity were then evaluated.

Effect of etoposide

As shown in Fig. 4, whereas p53 expression was induced by eto-

poside (Fig. 4A), the levels of MMP-9 activity (Fig. 4B), the

immunoreactivity of MMP-9 and MMP-2 (Fig. 4C), and the

MMP-9 promoter activity (Fig. 4D) remained unchanged after

etoposide treatment when compared with controls. Bian and

Figure 4: Effects of etoposide on p53 expression, MMP-9 activity, MMP-9 secretion and promoter activity in first trimester CTB.
Half of the CTB were treated with etoposide (a p53 inducer) for 48 h. The untreated cells were used as control. Cells were harvested and
expression of p53 was evaluated by the western blot analysis under reducing conditions (A). Secreted MMP-9 activity and concentration measured
by the gelatin zymography assay (B) and ELISA (C) in the culture medium. (B) CAT activity was also assayed and normalized to the amount of
proteins in the cellular lysates (D). The representative zymogram (B) corresponds to one experiment run in triplicate. However, three independent
experiments, each run in triplicate, were performed and the results expressed as mean+SEM. Relative MMP-9 activity and concentration were
calculated by arbitrarily setting the activity of the control as 100. Student’s paired t-test was used to compare etoposide-treated and untreated cells.
GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Sun (1997) observed the same results concerning MMP-2

expression in the p53-negative Saos cell line.

Effect of PFT-a

Because etoposide is not a specific inducer of p53, we also

treated the CTB with PFT-a, a specific inhibitor of transcrip-

tional activity of p53. As shown in Fig. 5, PFT-a did not

change MMP-9 and MMP-2 activities (Fig. 5A) nor did it

change MMP-9 expression (Fig. 5B) in contrast to the obser-

vations made in the same conditions in MCF-7 cells (Fig. 6A

and B). As expected, since PFT-a inhibits only p53 transcrip-

tional activity, p53 expression was not modified (Fig. 5B).

These results suggest that in CTB endogenous p53 is not able

to regulate MMP-2 and MMP-9 expression.

Effect of decreased expression of p53

In order to confirm the results obtained with PFT-a treatment of

CTB, cells were transfected with p53siRNA. As shown in Fig. 6,

although p53siRNA decreased the expression of p53 protein in

CTB (Fig. 7A) and in MCF-7 (Fig. 6D), it did not change

MMP-9 expression (Fig. 7A), activity (Fig. 7B) or immunoreac-

tivity (Fig. 7C), whereas it increased MMP-9 secretion in MCF-7

(Fig. 6C). The secretion of the MMP-9, being the last step of its

life, the lack of observation of reduced expression of MMP-9 in

cellular extract could be due to the kinetics of experiment.

Status of p53

Whereas transfection studies showed that exogenous p53 inhi-

bits MMP-9 promoter activity in CTB, endogenous p53 does

not seem to inhibit endogenous MMP-9 expression. This led

us to compare the status of p53 in CTB and in MCF-7 cells.

MCF7 and CTB express a p53 protein estimated at 56–

58 kDa on western blot, but in contrast to MCF-7, CTB

express two HMWC of p53 (with apparent molecular weight

of 220 and 195 kDa) as assessed by western blots of whole

cell lysates under non-reducing conditions (Fig. 8). We then

studied the effect of p53 expression level on HMWC in

CTB. As shown in Fig. 9, transfection of exogenous wt-p53 in

CTB increased both p53 monomer and nuclear HMWC of appar-

ent MW of 220, 195 and 165 kDa, whereas it did not increase for-

mation of HMWC in cytoplasm. In contrast, siRNA-induced

decreased expression of endogenous p53 reduced the level of

HMWC but not of p53 monomers in both cytoplasmic and

nuclear fractions but remained without effect on MMP-9

expression (Fig. 10).

Discussion

The process of trophoblastic cell invasion involves degradation

and remodelling of ECM mainly due to the action of MMPs.

The gelatinases (gelatinase A: MMP-2; gelatinase B:

MMP-9) that mainly degrade collagen IV and a number of

other ECM proteins, such as collagen I, V, VII, IX, fibronectin,

laminin, elastin and vitronectin, are the most studied MMPs in

placental invasion (Librach et al., 1991; Bischof et al., 1995;

Isaka et al., 2003; Staun-Ram et al., 2004). During the first tri-

mester, MMP-2 is expressed in extravillous trophoblast,

whereas MMP-9 is mainly expressed in villous CTB (Isaka

et al., 2003), and in vitro, human CTB cells secrete MMP-2

and MMP-9 (Bischof et al., 1991, 1995).

p53 is a potent transcriptional regulator of MMPs (among

other genes) in different cells (Bian and Sun, 1997; Sun

et al., 1999, 2000, 2004; Meyer et al., 2005; Liu et al., 2006)

either by direct interaction with a cis-element regulator, as

described for MMP-2 (Bian and Sun, 1997), or by cis-element

Figure 5: Effects of PFT-a on gelatinases activities and on MMP-9
expression.
Half CTB were treated with a known p53 inhibitor, 20 mM PFT-a, for
48 h. The untreated cells were used as control. Cells were harvested
and secreted MMP-9 (gelatinase B) and MMP-2 (gelatinase A) activi-
ties measured by the gelatin zymography assay in the culture medium
(A). Expression of MMP-9 was evaluated by the western blot analysis
(B). The zymogram (A) and western blot (B) scan corresponds to one
experiment run in triplicate. However, three independent experiments,
each run in triplicate, were performed and the results expressed as
mean+SEM. Relative MMP-9 and MMP-2 activities were calculated
by arbitrarily setting the activity of the control as 100. Student’s paired
t-test was used to compare PFT-a treated and untreated cells.
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dependent, but binding independent mechanism as observed

for MMP-9 in HT1080 cells (unpublished results).

Transfection experiments in CTB demonstrated the inhibi-

tory effect of exogenous p53 on MMP-9 promoter activity con-

firming unpublished results obtained in HT1080 cells, and the

study of Liu et al. (2006) in human leiomyosarcoma cell line.

However, here, we observed that in spite of an apparent p53

overexpression in trophoblastic cells, endogenous p53 is

unable to regulate MMP-9 and MMP-2 expression or activity

in these cells. Furthermore, in contrast to MCF-7 cells, invali-

dation of p53 gene in CTB remained without effect on MMP-9.

This apparent paradox between the effects of the endogenous

and exogenous (transfected) p53 and the high expression of

p53 could be explained by several mechanisms: by the pre-

sence of mutant p53 (Finlay et al., 1988), by the presence of

dominant negative spliced variants (Bourdon et al., 2005), by

a resistance to proteolytic degradation of p53 (Zaika et al.,

1999), by an accelerated nuclear export or an inhibition of

nuclear import (O’Brate et Giannakakou, 2003) and/or by

sequestration of p53 in a complex through binding to other pro-

teins (Nikolaev et al., 2003; O’Brate et Giannakakou, 2003).

Since cloning of trophoblastic p53 did not identify mutations

or spliced variants (Cohen et al., 2007), these two possible

explanations seem to be excluded. Incubating CTB in the pre-

sence of MG132 (a proteasome inhibitor) increases the amount

of p53 in CTB as measured by western blots (Cohen et al.,

2007) indicating that the normal proteolytic p53 pathway is

active in CTB. Although modifications of the nuclear import/
export of p53 have not been investigated in CTB, the presence

of HMWC of p53 in CTB as described here and reported pre-

viously (Cohen et al., 2007) could suggest that, in trophoblast,

overexpression and functional inactivation of p53 towards its

target genes MMP-2 and MMP-9 could be due to ‘sequestra-

tion’ of p53 in HMWC. This of course does not exclude an

altered import/export of p53. However, western blot exper-

iments showed that p53 monomers are also present in tropho-

blast. Despite an apparent excess of p53 monomers when

compared with HMWC, it is unfortunately impossible to

Figure 6: Effects of PFT-a and p53siRNA on gelatinase secretion and on MMP-9 and p53 expression in MCF-7 cells.
Effects of PFT-a on MMP-9 expression in MCF-7 were evaluated by ELISA (A) and zymography (B). To decrease the levels of p53 in MCF-7,
cells were transfected with 25 nM p53siRNA or control siRNA. Secreted MMP-9 concentration was measured by ELISA in the culture medium
(C). Cellular proteins (40 mg) were denatured and subjected to SDS–PAGE using a 10% running gel and blotted to PVDF. Western blot analysis
was performed using a MMP-9 specific polyclonal antibody, a GAPDH specific antibody and a p53 specific antibody, followed by detection using
ECL (D). Three independent experiments, each run in duplicate, were performed and the results expressed as mean+SEM. Student’s paired t-test
was used to compare p53siRNA transfected cells and control siRNA transfected cells. *P , 0.05.
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compare absolute quantities of p53 monomers to HMWC on

western blot due to the difference of transfer capacity of pro-

teins with low and high molecular weight. Transfection exper-

iments leading to increased levels of p53 in trophoblast showed

Figure 9: Effect of exogenous p53 on HMWC level in trophoblast.
CTB were transfected with 5 mg of wt-p53 construct (p53) or control
vector (ct). Western blot of cellular fractionations of CTB was per-
formed under non-reducing conditions and probed with DO-1. C, cyto-
plasmic fraction; N, nuclear fraction; two independent experiments
were performed.

Figure 10: Effect of decreased level of endogenous p53 on HMWC
level in trophoblast.
CTB were transfected with 25 nM p53siRNA or control siRNA.
Western blot of cellular fractionations of CTB was performed under
non-reducing conditions and probed with MMP-9 specific polyclonal
antibody, GAPDH specific antibody and p53 specific antibody. C,
cytoplasmic fraction; N, nuclear fraction; ct, control; two independent
experiments were performed.

Figure 8: Western blot of whole cell lysate of CTB and MCF-7 cells
performed under non-reducing conditions and probed with p53
specific antibody, DO-1.
Two independent experiments, each run in duplicate, were performed.
Markers: apparent molecular weight in kDa.

Figure 7: Effects of p53siRNA on MMP-9 and p53 expression and on
gelatinases secretion of CTB.
CTB were transfected with 25 nM p53siRNA or control siRNA. Cel-
lular proteins (20 mg) were denatured and subjected to sodium dodecyl
sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) using a
10% running gel and blotted to PVDF. Western blot analysis was per-
formed using an MMP-9 specific polyclonal antibody, GAPDH
specific antibody and a p53-specific antibody, followed by detection
using ECL (A). Secreted MMP-9 activity (B) and concentration (C)
was measured by zymography and ELISA, respectively, in the
culture medium (C). Three independent experiments, each run in
duplicate, were performed and the results expressed as mean+
SEM. Student’s paired t-test was used to compare p53siRNA trans-
fected cells and control siRNA transfected cells.
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that cytoplasmic HMWC were saturated at physiological level,

whereas reduced p53 expression decreased both p53 monomer

and HMWC in similar proportions. These results suggest that

inactivation of p53 by HMWC formation cannot be the only

explanation to p53 inactivation and that one has to understand

also why p53 is inactive in trophoblast.

In conclusion, whereas exogenous p53 is able to down-

regulate MMP-9 promoter activity in CTB, endogenous p53

is not able to regulate MMP-9 expression in first trimester

CTB cells. The presence of HMWC of p53 in CTB suggests

a potential mechanism of p53 inactivation but cannot account

for a complete inactivation. Inactivation of p53 through

mutation is the most common trait in cancer. By loosing its

oncosuppressive activity, p53 becomes oncogenic in almost

all malignant tumours (Soussi and Lozano, 2005). Although

p53 is not mutated in the human placenta, it has become func-

tionally incompetent. If these in vitro results are also true in the

in vivo situation, it would explain how invasion of CTB could

be regulated. Understanding why and how p53 is functionally

incompetent in CTB might well be the key to understanding

trophoblast invasion.
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