222 research outputs found

    Engineering the Melanocortin-4 Receptor to Control Constitutive and Ligand-Mediated Gs Signaling In Vivo

    Get PDF
    The molecular and functional diversity of G protein–coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein–mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of Gs signaling in vivo. We used naturally occurring human mutations to develop two Gs-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs). Our Gs-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone α-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the Gs pathway in vivo. These RASSLs can be used to activate Gs signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering

    Insufficiency of Janus Kinase 2–Autonomous Leptin Receptor Signals for Most Physiologic Leptin Actions

    Get PDF
    OBJECTIVE: Leptin acts via its receptor (LepRb) to signal the status of body energy stores. Leptin binding to LepRb initiates signaling by activating the associated Janus kinase 2 (Jak2) tyrosine kinase, which promotes the phosphorylation of tyrosine residues on the intracellular tail of LepRb. Two previously examined LepRb phosphorylation sites mediate several, but not all, aspects of leptin action, leading us to hypothesize that Jak2 signaling might contribute to leptin action independently of LepRb phosphorylation sites. We therefore determined the potential role in leptin action for signals that are activated by Jak2 independently of LepRb phosphorylation (Jak2-autonomous signals). RESEARCH DESIGN AND METHODS: We inserted sequences encoding a truncated LepRb mutant (LepRbΔ65c^{\Delta65c}, which activates Jak2 normally, but is devoid of other LepRb intracellular sequences) into the mouse Lepr locus. We examined the leptin-regulated physiology of the resulting Δ/Δ\Delta/\Delta mice relative to LepRb-deficient db/dbdb/db animals. RESULTS: The Δ/Δ\Delta/\Delta animals were similar to db/dbdb/db animals in terms of energy homeostasis, neuroendocrine and immune function, and regulation of the hypothalamic arcuate nucleus, but demonstrated modest improvements in glucose homeostasis. CONCLUSIONS: The ability of Jak2-autonomous LepRb signals to modulate glucose homeostasis in Δ/Δ\Delta/\Delta animals suggests a role for these signals in leptin action. Because Jak2-autonomous LepRb signals fail to mediate most leptin action, however, signals from other LepRb intracellular sequences predominate

    Exposure to Uteroplacental Insufficiency Reduces the Expression of Signal Transducer and Activator of Transcription 3 and Proopiomelanocortin in the Hypothalamus of Newborn Rats

    Get PDF
    IUGR has been linked to the development of type 2 diabetes. Recent data suggest that some of the molecular defects underlying type 2 diabetes reside in the CNS. Disruption of the signal transducer and activator of transcription 3 (STAT3) in the hypothalamic neurons expressing leptin receptor, results in severe obesity, hyperglycaemia, and hyperinsulinemia. Our aim was to investigate the expression of STAT3 and its downstream effector proopiomelanocortin (POMC) in IUGR rats obtained by uterine artery ligation. On day 19 of gestation, time-dated Sprague-Dawley pregnant rats were anesthetized, and both the uterine arteries were ligated. At birth, hypothalamus was dissected and processed to evaluate the expression of STAT3, its phosphorylated form, and POMC. STAT3 mRNA, STAT3 protein, phosphorylated STAT3, POW mRNA, and POMC protein were significantly reduced in IUGR versus sham animals (p < 0.0001. p < 0.05 and p < 0.001, p < 0.01, p < 0.01 respectively). No significant differences either in serum leptin concentrations or in hypothalamic leptin receptor expression were observed. Our results suggest that an abnormal intrauterine milieu call affect the hypothalamic expression of STAT3 and POW at birth. altering the hypothalamic signaling pathways that regulate the energy homeostasis. (Pediatr Res 66: 208-211, 2009

    Weight Loss after Roux-en-Y Gastric Bypass in Obese Patients Heterozygous for MC4R Mutations

    Get PDF
    BackgroundHeterozygous mutations in melanocortin-4 receptor (MC4R) are the most frequent genetic cause of obesity. Bariatric surgery is a successful treatment for severe obesity. The mechanisms of weight loss after bariatric surgery are not well understood.MethodsNinety-two patients who had Roux-en-Y gastric bypass (RYGB) surgery were screened for MC4R mutations. We compared percent excess weight loss (%EWL) in the four MC4R mutation carriers with that of two control groups: 8 matched controls and with the remaining 80 patients who underwent RYGB.ResultsFour patients were heterozygous for functionally significant MC4R mutations. In patients with MC4R mutations, the %EWL after RYGB (66% EWL) was not significantly different compared to matched controls (70% EWL) and non-matched controls (60% EWL) after 1 year of follow-up.ConclusionsThis study suggests that patients with heterozygous MC4R mutations also benefit from RYGB and that weight loss may be independent of the presence of such mutations

    The Nutritional Induction of COUP-TFII Gene Expression in Ventromedial Hypothalamic Neurons Is Mediated by the Melanocortin Pathway

    Get PDF
    BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation

    Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain

    Get PDF
    In addition to its effects in the hypothalamus to control body weight, leptin is involved in the regulation of neuronal function, development and survival. Recent findings have highlighted the neuroprotective effects of leptin against ischemic brain injury; however, to date, little is known about the role performed by the signal transducer and activator of transcription (STAT)-3, a major mediator of leptin receptor transduction pathway in the brain, in the beneficial effects of the hormone. Our data demonstrate that systemic acute administration of leptin produces neuroprotection in rats subjected to permanent middle cerebral artery occlusion (MCAo), as revealed by a significant reduction of the brain infarct volume and neurological deficit up to 7 days after the induction of ischemia. By combining a subcellular fractionation approach with immunohistofluorescence, we observe that neuroprotection is associated with a cell type-specific modulation of STAT3 phosphorylation in the ischemic cortex. The early enhancement of nuclear phospho-STAT3 induced by leptin in the astrocytes of the ischemic penumbra may contribute to a beneficial effect of these cells on the evolution of tissue damage. In addition, the elevation of phospho-STAT3 induced by leptin in the neurons after 24 h MCAo is associated with an increased expression of tissue inhibitor of matrix metalloproteinases-1 in the cortex, suggesting its possible involvement to the neuroprotection produced by the adipokine
    corecore