324 research outputs found

    The Stellar and Gas Kinematics of Several Irregular Galaxies

    Get PDF
    We present long-slit spectra of three irregular galaxies from which we determinethe stellar kinematics in two of the galaxies (NGC 1156 and NGC 4449) and ionized-gas kinematics in all three (including NGC 2366). We compare this to the optical morphology and to the HI kinematics of the galaxies. In the ionized gas, we see a linear velocity gradient in all three galaxies. In NGC 1156 we also detect a weak linear velocity gradient in the stars of (5+/-1/sin i) km/s/kpc to a radius of 1.6 kpc. The stars and gas are rotating about the same axis, but this is different from the major axis of the stellar bar which dominates the optical light of the galaxy. In NGC 4449 we do not detect organized rotation of the stars and place an upper limit of (3/sin i) km/s/kpc to a radius of 1.2 kpc. For NGC 4449, which has signs of a past interaction with another galaxy, we develop a model to fit the observed kinematics of the stars and gas. In this model the stellar component is in a rotating disk seen nearly face-on while the gas is in a tilted disk with orbits whose planes precess in the gravitational potential. This model reproduces the apparent counter-rotation of the inner gas of the galaxy. The peculiar orbits of the gas are presumed due to acquisition of gas in the past interaction.Comment: To be published in ApJ, November 20, 200

    A Magellanic Origin for the Warp of the Galaxy

    Get PDF
    We show that a Magellanic Cloud origin for the warp of the Milky Way can explain most quantitative features of the outer HI layer recently identified by Levine, Blitz & Heiles (2005). We construct a model similar to that of Weinberg (1998) that produces distortions in the dark matter halo, and we calculate the combined effect of these dark-halo distortions and the direct tidal forcing by the Magellanic Clouds on the disk warp in the linear regime. The interaction of the dark matter halo with the disk and resonances between the orbit of the Clouds and the disk account for the large amplitudes observed for the vertical m=0,1,2 harmonics. The observations lead to six constraints on warp forcing mechanisms and our model reasonably approximates all six. The disk is shown to be very dynamic, constantly changing its shape as the Clouds proceed along their orbit. We discuss the challenges to MOND placed by the observations.Comment: 4 pages, 3 figures, submitted to ApJ Letters. Additional graphics, 3d visualizations and movies available at http://www.astro.umass.edu/~weinberg/lm

    Evidence for coupling between the Sagittarius dwarf galaxy and the Milky Way warp

    Get PDF
    Using recent determinations of the mass and orbit of Sagittarius, I calculate its orbital angular momentum. From the latest observational data, I also calculate the angular momentum of the Milky Way's warp. I find that both angular momenta are directed toward l=270, b=0, and have magnitude 2-8x10^12 M_Sun kpc km s^-1, where the range in both cases reflects uncertainty in the mass. The coincidence of the angular momenta is suggestive of a coupling between these systems. Direct gravitational torque of Sgr on the disk is ruled out as the coupling mechanism. Gravitational torque due to a wake in the halo and the impulsive deposition of momentum by a passage of Sgr through the disk are still both viable mechanisms pending better simulations to test their predictions on the observed Sgr-MW system.Comment: 11 pages, to appear in the February 1 issue of ApJ

    On the generation of asymmetric warps in disk galaxies

    Get PDF
    The warps in many spiral galaxies are now known to asymmetric. Recent sensitive observations have revealed that asymmetry of warps may be the norm rather than exception. However there exists no generic mechanism to generate these asymmetries in warps. We have derived the dispersion relation in a compact form for the S-shaped warps(described by the m=1 mode) and the bowl-shaped distribution(described by the m=0 mode) in galactic disk embedded in a dark matter halo. We then performed the numerical modal analysis and used the linear and time-dependent superposition principle to generate asymmetric warps in the disk. On doing the modal analysis we find the frequency of the m=0m=0 mode is much larger than that of the m=1m=1 mode. The linear and time-dependent superposition of these modes with their unmodulated amplitudes(that is, the coefficients of superposition being unity) results in an asymmetry in warps of ~ 20 - 40 %, whereas a smaller coefficient for the m=0 mode results in a smaller asymmetry. The resulting values agree well with the recent observations. We study the dependence of the asymmetry index on the dark matter halo parameters. This approach can also naturally produce U-shaped warps and L-shaped warps. We show that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a dynamical wave interference between the first two bending modes(i.e. m=0 and m=1) in the disk. This is a simple but general method for generating asymmetric warps that is independent of how the individual modes arise in the disk.Comment: Accepted for publication in A &

    The stellar velocity dispersion in the inner 1.3 disk scale-lengths of the irregular galaxy NGC 4449

    Full text link
    We present measurements of the stellar velocity dispersion in the inner 1 arcmin radius (1.3 disk scale-lengths) of the irregular galaxy NGC 4449 determined from long-slit absorption-line spectra. The average observed dispersion is 29 +/-2 km/s, the same as predicted from NGC 4449's luminosity. No significant rotation in the stars is detected. If we assume a maximum rotation speed of the stars from the model determined from the gas kinematics of Hunter et al. (2002), the ratio V_max/sigma_z measured globally is 3. This ratio is comparable to values measured in spiral galaxies, and implies that the stellar disk in NGC 4449 is kinematically relatively cold. The intrinsic minor-to-major axis ratio (b/a)_0 is predicted to be in the range 0.3-0.6, similar to values derived from the distribution of observed b/a of Im galaxies. However, V/sigma_z measured locally is 0.5-1.1, and so the circular velocity of NGC 4449 is comparable or less than the velocity of the stars within the central 1.3 disk scale-lengths of the galaxy.Comment: To be published in ApJ, Nov 200

    Warped Galaxies From Misaligned Angular Momenta

    Get PDF
    A galaxy disk embedded in a rotating halo experiences a dynamical friction force which causes it to warp when the angular momentum axes of the disk and halo are misaligned. Our fully self-consistent simulations of this process induce long-lived warps in the disk which mimic Briggs's rules of warp behavior. They also demonstrate that random motion within the disk adds significantly to its stiffness. Moreover, warps generated in this way have no winding problem and are more pronounced in the extended \h1 disk. As emphasized by Binney and his co-workers, angular momentum misalignments, which are expected in hierarchical models of galaxy formation, can account for the high fraction of warped galaxies. Our simulations exemplify the role of misaligned spins in warp formation even when the halo density is not significantly flattened.Comment: 6 pages, 5 figures. Accepted for publication in Ap.J.

    Invariant manifolds and the response of spiral arms in barred galaxies

    Full text link
    The unstable invariant manifolds of the short-period family of periodic orbits around the unstable Lagrangian points L1L_1 and L2L_2 of a barred galaxy define loci in the configuration space which take the form of a trailing spiral pattern. In the present paper we investigate this association in the case of the self-consistent models of Kaufmann & Contopoulos (1996) which provide an approximation of real barred-spiral galaxies. We also examine the relation of `response' models of barred-spiral galaxies with the theory of the invariant manifolds. Our main results are the following: The invariant manifolds yield the correct form of the imposed spiral pattern provided that their calculation is done with the spiral potential term turned on. We provide a theoretical model explaining the form of the invariant manifolds that supports the spiral structure. The azimuthal displacement of the Lagrangian points with respect to the bar's major axis is a crucial parameter in this modeling. When this is taken into account, the manifolds necessarily develop in a spiral-like domain of the configuration space, delimited from below by the boundary of a banana-like non-permitted domain, and from above either by rotational KAM tori or by cantori forming a stickiness zone. We construct `spiral response' models on the basis of the theory of the invariant manifolds and examine the connection of the latter to the `response' models (Patsis 2006) used to fit real barred-spiral galaxies, explaining how are the manifolds related to a number of morphological features seen in such models.Comment: 16 Page

    The puzzle of the polar structure in NGC 4650A

    Get PDF
    This work presents new surface photometry and two-dimensional modeling of the light distribution of the Polar Ring Galaxy NGC 4650A, based on near-infrared (NIR) observations and high resolution optical imaging acquired during the Hubble Heritage program. The NIR and optical integrated colors of the S0 and the polar ring, and their scale parameters, are compared with those for standard galaxy morphological types. The polar structure appears to be a disk of a very young age, while the colors and light distribution of the host galaxy do not resemble that of a typical early-type system. We compare these observational results with the predictions from different formation scenarios for polar ring galaxies. The peculiarities of the central S0 galaxy, the polar disk structure and stellar population ages suggest that the polar ring galaxy NGC 4650A may be the result of a dissipative merger event, rather than of an accretion process.Comment: 26 pages, 10 figures, accepted for publication to the Astronomical Journa

    Asymptotic Orbits in Barred Spiral Galaxies

    Full text link
    We study the formation of the spiral structure of barred spiral galaxies, using an NN-body model. The evolution of this NN-body model in the adiabatic approximation maintains a strong spiral pattern for more than 10 bar rotations. We find that this longevity of the spiral arms is mainly due to the phenomenon of stickiness of chaotic orbits close to the unstable asymptotic manifolds originated from the main unstable periodic orbits, both inside and outside corotation. The stickiness along the manifolds corresponding to different energy levels supports parts of the spiral structure. The loci of the disc velocity minima (where the particles spend most of their time, in the configuration space) reveal the density maxima and therefore the main morphological structures of the system. We study the relation of these loci with those of the apocentres and pericentres at different energy levels. The diffusion of the sticky chaotic orbits outwards is slow and depends on the initial conditions and the corresponding Jacobi constant.Comment: 17 pages, 24 figure

    The Potential-Density Phase Shift Method for Determining the Corotation Radii in Spiral and Barred Galaxies

    Get PDF
    We have developed a new method for determining the corotation radii of density waves in disk galaxies, which makes use of the radial distribution of an azimuthal phase shift between the potential and density wave patterns. The approach originated from improved theoretical understandings of the relation between the morphology and kinematics of galaxies, and on the dynamical interaction between density waves and the basic-state disk stars which results in the secular evolution of disk galaxies. In this paper, we present the rationales behind the method, and the first application of it to several representative barred and grand-design spiral galaxies, using near-infrared images to trace the mass distributions, as well as to calculate the potential distributions used in the phase shift calculations. We compare our results with those from other existing methods for locating the corotations, and show that the new method both confirms the previously-established trends of bar-length dependence on galaxy morphological types, as well as provides new insights into the possible extent of bars in disk galaxies. Application of the method to a larger sample and the preliminary analysis of which show that the phase shift method is likely to be a generally-applicable, accurate, and essentially model-independent method for determining the pattern speeds and corotation radii of single or nested density wave patterns in galaxies. Other implications of this work are: most of the nearby bright disk galaxies appear to possess quasi-stationary spiral modes; that these density wave modes and the associated basic state of the galactic disk slowly transform over time; and that self-consistent N-particle systems contain physics not revealed by the passive orbit analysis approaches.Comment: 48 pages, 16 figures. Accepted for publication in the Astronomical Journa
    corecore