687 research outputs found

    An optimisation approch to determine the electromagnetic properties of lanthanum iron garnet filled PVDF-polymer composite at microwave frequencies

    Get PDF
    In this study, an optimization approach is shown to improve the accuracy of the Nicholson and Ross Weir (NRW) method to determine both the complex permittivity and permeability of the lanthanum iron garnet-filled PVDF-polymer nanocomposite loaded in a rectangular waveguide. The complex permittivity and permeability values were in turn used in Finite Element Method to calculate the S-parameter and were found to be in good agreement with the measured values

    Classification of Construction Projects

    Get PDF
    The final publication is available at World Academy of Science via https://waset.org/Publication/classification-of-construction-projects/10001697 © 2015, This unmodified version is made available under the CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0/In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed

    A Quantitative, High-Throughput Reverse Genetic Screen Reveals Novel Connections between Pre–mRNA Splicing and 5′ and 3′ End Transcript Determinants

    Get PDF
    Here we present the development and implementation of a genome-wide reverse genetic screen in the budding yeast, Saccharomyces cerevisiae, that couples high-throughput strain growth, robotic RNA isolation and cDNA synthesis, and quantitative PCR to allow for a robust determination of the level of nearly any cellular RNA in the background of 5,500 different mutants. As an initial test of this approach, we sought to identify the full complement of factors that impact pre–mRNA splicing. Increasing lines of evidence suggest a relationship between pre–mRNA splicing and other cellular pathways including chromatin remodeling, transcription, and 3′ end processing, yet in many cases the specific proteins responsible for functionally connecting these pathways remain unclear. Moreover, it is unclear whether all pathways that are coupled to splicing have been identified. As expected, our approach sensitively detects pre–mRNA accumulation in the vast majority of strains containing mutations in known splicing factors. Remarkably, however, several additional candidates were found to cause increases in pre–mRNA levels similar to that seen for canonical splicing mutants, none of which had previously been implicated in the splicing pathway. Instead, several of these factors have been previously implicated to play roles in chromatin remodeling, 3′ end processing, and other novel categories. Further analysis of these factors using splicing-sensitive microarrays confirms that deletion of Bdf1, a factor that links transcription initiation and chromatin remodeling, leads to a global splicing defect, providing evidence for a novel connection between pre–mRNA splicing and this component of the SWR1 complex. By contrast, mutations in 3′ end processing factors such as Cft2 and Yth1 also result in pre–mRNA splicing defects, although only for a subset of transcripts, suggesting that spliceosome assembly in S. cerevisiae may more closely resemble mammalian models of exon-definition. More broadly, our work demonstrates the capacity of this approach to identify novel regulators of various cellular RNAs

    Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    Full text link
    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar filed models.Comment: 16 pages, 17 figure

    TMop: a Tool for Unsupervised Translation Memory Cleaning

    Get PDF
    We present TMop, the first open-source tool for automatic Translation Memory (TM) cleaning. The tool implements a fully unsupervised approach to the task, which allows spotting unreliable translation units (sentence pairs in different languages, which are supposed to be translations of each other) without requiring labeled training data. TMop includes a highly configurable and extensible set of filters capturing different aspects of translation quality. It has been evaluated on a test set composed of 1,000 translation units (TUs) randomly extracted from the English-Italian version of MyMemory, a large-scale public TM. Results indicate its effectiveness in automatic removing “bad” TUs, with comparable performance to a state-of-the-art supervised method (76.3 vs. 77.7 balanced accuracy)

    Fractionation of cellulose nanocrystals : enhancing liquid crystal ordering without promoting gelation

    Get PDF
    Colloids of electrically charged nanorods can spontaneously develop a fluid yet ordered liquid crystal phase, but this ordering competes with a tendency to form a gel of percolating rods. The threshold for ordering is reduced by increasing the rod aspect ratio, but the percolation threshold is also reduced with this change; hence, prediction of the outcome is nontrivial. Here, we show that by establishing the phase behavior of suspensions of cellulose nanocrystals (CNCs) fractionated according to length, an increased aspect ratio can strongly favor liquid crystallinity without necessarily influencing gelation. Gelation is instead triggered by increasing the counterion concentration until the CNCs lose colloidal stability, triggering linear aggregation, which promotes percolation regardless of the original rod aspect ratio. Our results shine new light on the competition between liquid crystal formation and gelation in nanoparticle suspensions and provide a path for enhanced control of CNC self-organization for applications in photonic crystal paper or advanced composites

    Successful radiopeptide targeting of metastatic anaplastic meningioma: Case report

    Get PDF
    A patient with anaplastic meningioma and lung metastases resistant to conventional treatment underwent radiopeptide therapy with 177Lu- DOTA-octreotate in our institute. The treatment resulted in significant improvement in patient's quality of life and inhibition of tumor progression. This case may eventually help to establish the value of radiopeptide therapy in patients with this rare condition
    corecore