14,167 research outputs found
New planetary and EB candidates from Campaigns 1-6 of the K2 mission
With only two functional reaction wheels, Kepler cannot maintain stable
pointing at its original target field and entered a new mode of observation
called K2. Our method is based on many years of experience in planet hunting
for the CoRoT mission. Due to the unstable pointing, K2 light curves present
systematics that are correlated with the target position in the CCD. Therefore,
our pipeline also includes a decorrelation of this systematic noise. Our
pipeline is optimised for bright stars for which spectroscopic follow-up is
possible. We achieve a maximum precision on 6 hours of 6 ppm. The decorrelated
light curves are searched for transits with an adapted version of the CoRoT
alarm pipeline. We present 172 planetary candidates and 327 eclipsing binary
candidates from campaigns 1, 2, 3, 4, 5 and 6 of K2. Both the planetary
candidates and eclipsing binary candidates lists are made public to promote
follow-up studies. The light curves will also be available to the community.Comment: 22 pages. 5 figures, 4 tables, Accepted for publication in A&
Detecting transit signatures of exoplanetary rings using SOAP3.0
CONTEXT. It is theoretically possible for rings to have formed around
extrasolar planets in a similar way to that in which they formed around the
giant planets in our solar system. However, no such rings have been detected to
date.
AIMS: We aim to test the possibility of detecting rings around exoplanets by
investigating the photometric and spectroscopic ring signatures in
high-precision transit signals.
METHODS: The photometric and spectroscopic transit signals of a ringed planet
is expected to show deviations from that of a spherical planet. We used these
deviations to quantify the detectability of rings. We present SOAP3.0 which is
a numerical tool to simulate ringed planet transits and measure ring
detectability based on amplitudes of the residuals between the ringed planet
signal and best fit ringless model.
RESULTS: We find that it is possible to detect the photometric and
spectroscopic signature of near edge-on rings especially around planets with
high impact parameter. Time resolution 7 mins is required for the
photometric detection, while 15 mins is sufficient for the spectroscopic
detection. We also show that future instruments like CHEOPS and ESPRESSO, with
precisions that allow ring signatures to be well above their noise-level,
present good prospects for detecting rings.Comment: 13 pages, 16 figures, 2 tables , accepted for publication in A&
Antihyperon polarization in high-energy inclusive reactions
We propose a model for the antihyperon polarization in high-energy
proton-nucleus inclusive reactions, based on the final-state interactions
between the antihyperons and other produced particles (predominantly pions). To
formulate this idea, we use the previously obtained low-energy
pion-(anti-)hyperon interaction using effective chiral Lagrangians, and a
hydrodynamic parametrization of the background matter, which expands and
decouples at a certain freezeout temperature.Comment: 17 pages, 10 figure
Distinguishing the albedo of exoplanets from stellar activity
Light curves show the flux variation from the target star and its orbiting
planets as a function of time. In addition to the transit features created by
the planets, the flux also includes the reflected light component of each
planet, which depends on the planetary albedo. This signal is typically
referred to as phase curve and could be easily identified if there were no
additional noise. As well as instrumental noise, stellar activity, such as
spots, can create a modulation in the data, which may be very difficult to
distinguish from the planetary signal. We analyze the limitations imposed by
the stellar activity on the detection of the planetary albedo, considering the
limitations imposed by the predicted level of instrumental noise and the short
duration of the observations planned in the context of the CHEOPS mission. As
initial condition, we have assumed that each star is characterized by just one
orbiting planet. We built mock light curves that included a realistic stellar
activity pattern, the reflected light component of the planet and an
instrumental noise level, which we have chosen to be at the same level as
predicted for CHEOPS. We then fit these light curves to try to recover the
reflected light component, assuming the activity patterns can be modeled with a
Gaussian process.We estimate that at least one full stellar rotation is
necessary to obtain a reliable detection of the planetary albedo. This result
is independent of the level of noise, but it depends on the limitation of the
Gaussian process to describe the stellar activity when the light curve
time-span is shorter than the stellar rotation. Finally, in presence of typical
CHEOPS gaps in the simulations, we confirm that it is still possible to obtain
a reliable albedo.Comment: Accepted for publication in A&A, 14 pages, 12 figure
El papel de las creencias motivacionales en la formación de profesores de Física de la Enseñanza media y su relación con el saber profesional
Este trabajo tiene como objetivo investigar las creencias motivacionales de profesores y licenciandos de Física de la Enseñanza Media y su relación con el saber profesional. Los datos fueran colectados por medio de entrevistas semi-estructuradas realizadas con profesores de Física de la Enseñanza Media de una escuela pública e alumnos del curso de Licenciatura en Física de la Universidade Estadual de Maringá, Paraná/Brasil. Para análisis y categorización de los datos utilizamos la herramienta analítica de la Análisis de Contenido, de la cual emos estructurado un conjunto de categorías elaboradas del discurso de los profesores y licenciandos. Como conclusión, apuntamos para la relevancia de profundar las pesquisas acerca de la motivación en el contexto de la enseñanza de Física y de la formación de profesores
- …