741 research outputs found

    Classical Statistics and Statistical Learning in Imaging Neuroscience

    Get PDF
    Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques

    Neuroimaging Research: From Null-Hypothesis Falsification to Out-of-sample Generalization

    Get PDF
    International audienceBrain imaging technology has boosted the quantification of neurobiological phenomena underlying human mental operations and their disturbances. Since its inception, drawing inference on neurophysiological effects hinged on classical statistical methods, especially, the general linear model. The tens of thousands variables per brain scan were routinely tackled by independent statistical tests on each voxel. This circumvented the curse of dimensionality in exchange for neurobiologically imperfect observation units, a challenging multiple comparisons problem, and limited scaling to currently growing data repositories. Yet, the always-bigger information granularity of neuroimaging data repositories has lunched a rapidly increasing adoption of statistical learning algorithms. These scale naturally to high-dimensional data, extract models from data rather than prespecifying them, and are empirically evaluated for extrapolation to unseen data. The present paper portrays commonalities and differences between long-standing classical inference and upcoming generalization inference relevant for conducting neuroimaging research

    Functional specialization within the inferior parietal lobes across cognitive domains

    Get PDF
    The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated hemispheric specialization in the IPL supports some of the most distinctive human mental capacities

    A cognitive fingerprint in human random number generation

    Get PDF
    Is the cognitive process of random number generation implemented via person-specific strategies corresponding to highly individual random generation behaviour? We examined random number sequences of 115 healthy participants and developed a method to quantify the similarity between two number sequences on the basis of Damerau and Levenshtein's edit distance. "Same-author" and "different author" sequence pairs could be distinguished (96.5% AUC) based on 300 pseudo-random digits alone. We show that this phenomenon is driven by individual preference and inhibition of patterns and stays constant over a period of 1 week, forming a cognitive fingerprint

    Formal Models of the Network Co-occurrence Underlying Mental Operations

    Get PDF
    International audienceSystems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-uncon-strained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition
    corecore