
Neuroimaging Research: From Null-Hypothesis

Falsification to Out-of-sample Generalization
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Abstract	

Brain	 imaging	 technology	has	boosted	 the	quantification	of	neurobiological	phenomena	underlying	

human	 mental	 operations	 and	 their	 disturbances.	 Since	 its	 inception,	 drawing	 inference	 on	

neurophysiological	 effects	 hinged	 on	 classical	 statistical	 methods,	 especially,	 the	 general	 linear	

model.	 The	 tens	 of	 thousands	 variables	 per	 brain	 scan	 were	 routinely	 tackled	 by	 independent	

statistical	 tests	 on	 each	 voxel.	 This	 circumvented	 the	 curse	 of	 dimensionality	 in	 exchange	 for	

neurobiologically	 imperfect	 observation	 units,	 a	 challenging	 multiple	 comparisons	 problem,	 and	

limited	scaling	to	currently	growing	data	repositories.	Yet,	the	always-bigger	information	granularity	

of	 neuroimaging	 data	 repositories	 has	 lunched	 a	 rapidly	 increasing	 adoption	 of	 statistical	 learning	

algorithms.	 These	 scale	 naturally	 to	 high-dimensional	 data,	 extract	 models	 from	 data	 rather	 than	

prespecifying	 them,	 and	 are	 empirically	 evaluated	 for	 extrapolation	 to	 unseen	 data.	 The	 present	

paper	 portrays	 commonalities	 and	 differences	 between	 long-standing	 classical	 inference	 and	

upcoming	generalization	inference	relevant	for	conducting	neuroimaging	research.	
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Introduction	

While	the	brain-imaging	domain	has	long	been	dominated	by	analysis	approaches	rooted	in	classical	

statistics,	the	changing	dataset	properties	and	increasing	availability	of	statistical	learning	techniques	

have	 encouraged	 the	 more	 frequent	 use	 of	 statistical	 learning	 techniques	 in	 many	 quantitative	

domains	(House	of	Common,	2016;	Jordan	et	al.,	2013;	Manyika	et	al.,	2011).	This	recent	change	in	

data	analysis	styles	has	engendered	uneasiness	and	misunderstanding.	The	goal	of	the	present	paper	

is	 to	 disentangle	 classical	 inference	 by	 null-hypothesis	 testing	 and	 pattern	 recognition	 by	 out-of-

sample	 generalization	 in	 neuroimaging	 with	 respect	 to	 their	 historical	 trajectories,	 conceptual	

frameworks,	and	interpretational	differences.	

During	the	past	15	years,	neuroscientists	have	transitioned	from	exclusively	qualitative	reports	of	few	

patients	with	neurological	brain	lesions	to	quantitative	lesion-symptom	mapping	on	the	voxel	level	in	

hundreds	of	patients	(Bates	et	al.,	2003).	We	have	gone	from	manually	staining	and	microscopically	

inspecting	 single	 brain	 slices	 to	 3D	 models	 of	 neuroanatomy	 at	 micrometer	 scale	 (Amunts	 et	 al.,	

2013).	 We	 have	 also	 gone	 from	 individual	 experimental	 studies	 to	 the	 increasing	 possibility	 of	

automatized	knowledge	aggregation	across	 thousands	of	previously	 isolated	neuroimaging	 findings	

(Yarkoni,	 Poldrack,	 Nichols,	 Van	 Essen,	 &	 Wager,	 2011).	 Rather	 than	 laboriously	 collecting	 and	

publishing	 in-house	data	 in	a	 single	paper,	 investigators	are	now	routinely	 reanalyzing	multi-modal	

data	 repositories	 managed	 by	 national,	 continental,	 and	 inter-continental	 consortia	 (Kandel,	

Markram,	Matthews,	Yuste,	&	Koch,	2013;	Markram,	2012;	Poldrack	&	Gorgolewski,	2014;	Van	Essen	

et	 al.,	 2012).	 The	 granularity	 of	 neuroimaging	 datasets	 is	 hence	 growing	 in	 terms	 of	 scanning	

resolution,	 sample	 size,	 and	 complexity	 of	 meta-information	 (S.	 Eickhoff,	 Turner,	 Nichols,	 &	 Van	

Horn,	 2016;	 Van	 Horn	 &	 Toga,	 2014).	 Consequently,	 the	 scope	 of	 neuroimaging	 analyses	 has	

expanded	from	the	predominance	of	null-hypothesis	testing	to	statistical-learning	methods	that	are	

i)	more	data-driven	by	flexible	models,	ii)	more	often	scalable	to	high-dimensional	data,	and	iii)	more	

heuristic	 by	 increased	 reliance	 on	 numerical	 optimization	 (S.	 B.	 Eickhoff,	 Thirion,	 Varoquaux,	 &	

Bzdok,	 2015;	 Jordan	&	Mitchell,	 2015;	 LeCun,	Bengio,	&	Hinton,	 2015).	Statistical	 learning	 (Hastie,	
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Tibshirani,	 &	 Friedman,	 2001)	 henceforth	 comprises	 the	 umbrella	 of	 "machine	 learning",	 "data	

mining",	"pattern	recognition",	"knowledge	discovery",	and	"high-dimensional	statistics".	

The	current	shift	from	almost	exclusive	classical	to	increasingly	solicited	learning	methods	adds	new	

categories	of	inference	to	the	imaging	neuroscientist's	arsenal	(Bzdok,	2016;	B.	Efron	&	Hastie,	2016).	

Indeed,	classical	statistics	based	on	null-hypothesis	falsification	and	statistical	learning	based	on	out-

of-sample	generalization	capture	partly	diverging	properties	of	 the	neurophenomenon	under	study	

(cf.	Cohen,	1990;	Gigerenzer	&	Murray,	1987).	CS	are	mostly	used	in	neuroimaging	to	answer	where	

significant	effects	can	be	localized	in	the	brain	in	an	representational	agenda,	whereas	SL	are	mostly	

used	to	answer	whether	relevant	patterns	can	be	found	in	neural	activity	in	an	informational	agenda.	

Additionally,	the	quality	of	CS	findings	are	judged	based	on	explanatory	power	while	SL	findings	are	

judged	 by	 predictive	 power,	 results	 of	 which	 may	 diverge	 in	 practice	 (Lo,	 Chernoff,	 Zheng,	 &	 Lo,	

2015;	 Wu,	 Chen,	 Hastie,	 Sobel,	 &	 Lange,	 2009).	 Statistical	 methods	 can	 be	 conceptualized	 as	

spanning	a	continuum	between	the	two	poles	of	classical	statistics	(CS)	and	statistical	learning	(SL)	(B.	

Efron	&	Hastie,	2016;	Jordan	et	al.,	2013;	p.	61),	while	their	relationship	has	seldom	been	explicitly	

characterized	 in	 mathematical	 terms	 (see	 already	 Bradley	 Efron,	 1978).	 Intuitively,	 the	 truth	 is	

believed	to	be	in	the	model	(cf.	Wigner,	1960)	in	the	CS	regime,	while	it	is	believed	to	be	in	the	data	

(cf.	Halevy,	Norvig,	&	Pereira,	2009)	 in	a	SL	 regime.	 It	has	 indeed	been	previously	stated	that	"one	

does	not	need	to	learn	(from	data)	what	one	can	infer	(from	the	current	model).	Moreover,	one	does	

not	 need	 to	 infer	 what	 one	 can	 learn	 (intractable	 inferential	 procedures	 can	 be	 circumvented	 by	

collecting	data)"	(Jordan,	2010).	Importantly,	CS	has	mostly	been	fashioned	for	problems	with	small	

samples	 that	 can	be	 grasped	by	plausible,	 handpicked	models	with	 a	 small	 number	of	 parameters	

operating	 in	 an	 analytical	 fashion.	 SL	 was	 mostly	 fashioned	 for	 problems	 with	 many	 variables	 in	

potentially	 large	 samples	with	 rare	knowledge	of	 the	data-generating	process	emulated	by	a	data-

derived	mathematical	function	by	a	machine	in	a	heuristic	fashion.	Any	choice	of	statistical	method	

for	 a	neurobiological	 investigation	predetermines	 the	 spectrum	of	possible	 results	 and	permissible	
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conclusions.	This	choice	has	 recently	become	more	difficult	as	SL	models	are	 turned	 into	a	 trusted	

option	of	statistical	machinery	while	models	from	CS	have	previously	enjoyed	monopoly.	

From	 the	 perspective	 of	 the	 neuroimaging	 practitioner,	 both	 CS	 and	 SL	 have	 the	 common	 goal	 to	

extract	 neurobiological	 insight	 from	 brain	 scans.	 Both	 statistical	 regimes	 are	 applied	 to	 infer	 the	

mechanisms	 in	 nature	 that	 explain	 the	 neural	 correlates	 underlying	 psychological	 processes,	

relationships	between	questionnaires	and	brain	connectivity	measures,	or	the	relevant	differences	in	

brain	 structure	 between	 normal	 and	 diseased	 populations.	 Both	 statistical	 families	 establish	 such	

brain-behavior	 associations	 by	 seeing	 through	 the	 noise	 and	 assessing	 a	 notion	 of	 how	 likely	 the	

relationship	would	be	replicated	in	other	data.	

Despite	these	general	similarities,	CS	and	SL	can	be	used	to	answer	different	questions	 in	everyday	

neuroimaging	analysis.	First,	tools	from	CS	are	the	more	natural	choice	when	the	investigator	wishes	

to	 make	 a	 judgment	 about	 statistical	 relationships	 present	 in	 data	 collected	 in	 a	 retrospective	

fashion.	 SL	 tools	 are	 the	 natural	 choice	 when	 explicit	 judgment	 on	 future,	 yet-to-be-acquired	

behavioral	and	neuroimaging	data	is	the	aim	of	statistical	modelling.	Second,	the	CS	framework	has	

more	explicitly	evolved	 to	answer	questions	about	group	differences	 (first	group	analyses	were	on	

potatoe	 varieties	 and	 bere	 brews),	 whereas	 the	 SL	 framework	 was	 more	 generally	 motivated	 by	

extrapolating	patterns	from	input-output	data	(e.g.,	computer	algorithms	that	learn	board	games	or	

flying	a	helicopter	from	experience).	In	practice,	however,	SL	has	legitimately	and	successfully	been	

used	 to	 find	 relevant	 neurobiological	 differences	 between	 different	 groups	 of	 individuals,	 for	

instance	to	find	biomarkers	(Gabrieli,	Ghosh,	&	Whitfield-Gabrieli,	2015;	Wager	et	al.,	2013).	Third,	SL	

methods	may	 turn	 out	 to	 be	 the	more	 pertinent	 option	when	 the	 investigator	 aims	 at	 predicting	

disease	 trajectories	 and	 drug	 responses	 in	 single	 brain	 acquisitions	 in	 a	 single	 individual.	 SL	 is	

therefore	 likely	 to	 play	 an	 increasingly	 important	 role	 for	 the	 upcoming	 trend	 of	 personalized	

medicine	that	is	based	on	intra-individual	prediction	rather	than	population-level	inference.	
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Classical	inference	

Neuroscientists	 have	 generated	 new	 insight	 for	 more	 than	 a	 century	 without	 strong	 reliance	 on	

statistical	 methodology	 by	 brain	 lesion	 reports	 (Broca,	 1865;	 Harlow,	 1848;	 Wernicke,	 1881),	

microscopical	 inspection	 (Brodmann,	 1909;	 Vogt	 &	 Vogt,	 1919),	 and	 pharmacological	 intervention	

(Clark,	Del	Giudice,	&	Aghajanian,	1970).	The	advent	of	neuroimaging	methods	(Fox	&	Raichle,	1986)	

then	 enabled	 a	 much	 more	 easily	 quantifiable	 characterization	 of	 the	 brain	 systems	 underlying	

sensory,	cognitive,	or	affective	tasks.	Ever	since,	topographical	 localization	of	neural	activity	effects	

was	largely	dominated	by	analysis	approaches	from	CS,	in	particular	the	general	linear	model	(GLM)	

(K.	 J.	 Friston	et	 al.,	 1994).	Widespread	CS	 tools,	 such	as	 standard	deviation,	p	 values,	ANOVA,	 and	

hypothesis	testing,	had	already	been	 invented	 in	the	beginning	of	the	20th	century	and	dominated	

statistical	analysis	in	academia	ever	since	(Cowles	&	Davis,	1982;	Fisher	&	Mackenzie,	1923;	Neyman	

&	 Pearson,	 1933).	 In	 the	 neuroimaging	 domain,	 they	were	 and	 still	 are	 routinely	 used	 in	 a	mass-

univariate	 regime	 by	 computing	 univariate	 statistics	 for	 activity	 observation	 in	 each	 voxel	

independently	 (K.	 J.	 Friston	 et	 al.,	 1994).	 It	 involves	 fitting	 beta	 coefficients	 corresponding	 to	 the	

columns	 of	 a	 design	 matrix	 (i.e.,	 prespecified	 stimulus/task/behavior	 indicators,	 the	 independent	

variables)	to	a	single	voxel's	imaging	time	series	of	measured	neural	activity	changes	(i.e.,	dependent	

variable)	 to	 obtain	 a	 beta	 coefficient	 per	 indicator.	 The	 ensuing	 multiple	 comparisons	 problem	

motivated	more	than	two	decades	of	methodological	research	(K.J.	Friston,	2006;	Thomas	E.	Nichols,	

2012;	 Smith,	 Matthews,	 &	 Jezzard,	 2001;	 Worsley,	 Evans,	 Marrett,	 &	 Neelin,	 1992).	 It	 was	 early	

acknowledged	that	the	unit	of	interest	for	the	null	hypothesis	should	be	spatially	neighboring	voxel	

groups	(Chumbley	&	Friston,	2009),	which	motivated	the	use	of	random	field	theory	(Worsley	et	al.,	

1992)	during	model	inference	to	alleviate	the	multiple	comparisons	problem.	

CS	 operates	 by	 continuously	 replacing	 current	 hypotheses	 by	 always	 more	 pertinent	 hypotheses	

using	 verification	 and	 falsification.	 The	 rationale	 behind	 hypothesis	 falsification	 is	 that	 one	

counterexample	 can	 reject	 a	 theory	 by	 deductive	 reasoning	 (Goodman,	 1999).	 The	 neuroscientist	

verbalizes	 two	mutually	 exclusive	 hypotheses	 by	 domain-informed	 judgment.	 The	 investigator	 has	
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the	 agenda	 to	 disprove	 the	 null	 hypothesis	 because	 it	 only	 leaves	 the	 preferred	 alternative	

hypothesis	as	the	new	standard	belief.	If	the	data	have	a	probability	of	<=5%	to	be	true	given	the	null	

hypothesis	 (P(result|H0)),	 it	 is	 conventionally	 evaluated	 to	 be	 significant.	 The	p	 value	denotes	 the	

conditional	 probability	 of	 obtaining	 an	 equal	 or	more	 extreme	 test	 statistic	 provided	 that	 the	 null	

hypothesis	 H0	 is	 true	 at	 the	 prespecified	 significance	 threshold	 alpha	 (Anderson,	 Burnham,	 &	

Thompson,	2000).	If	the	null	hypothesis	is	not	rejected,	the	test	yields	no	conclusive	result	instead	of	

a	null	result	(Schmidt,	1996).	In	this	way,	classical	hypothesis	testing	continuously	replaces	currently	

embraced	hypotheses	explaining	a	phenomenon	in	nature	by	better	hypotheses	with	more	empirical	

support	in	a	Darwinian	selection	process.	In	the	current	"big-data"	era,	it	is	an	important	caveat	that	

p	values	become	better	(i.e.,	lower)	with	increasing	sample	sizes	(Berkson,	1938).	

	

Statistical	Learning	

In	the	neuroimaging	 literature,	 it	 is	seldom	mentioned	that	the	GLM	would	not	have	been	solvable	

for	 unique	 solutions	 in	 the	 high-dimensional	 regime	 because	 the	 number	 of	 input	 variables	 p	

exceeded	by	far	the	number	of	samples	n,	which	etnails	an	under-determined	system	of	equations.	

This	scenario	incapacitates	most	statistical	estimators	from	CS	(cf.	Giraud,	2014;	Hastie,	Tibshirani,	&	

Wainwright,	 2015).	 Regularization	 by	 shrinkage-	 and	 sparsity-inducing	 norms,	 such	 as	 in	 modern	

regression	 analysis	 via	 Lasso,	 ElasticNet,	 and	 RidgeRegression	 (cf.	 Hastie	 et	 al.,	 2015;	 Jenatton,	

Audibert,	 &	 Bach,	 2011),	 emerged	 only	 later	 as	 a	 principled	 way	 to	 de-escalate	 the	 need	 for	

dimensionality	 reduction	 and	 to	 enable	 the	 tractability	 of	 the	 high-dimensional	 "p	 >	 n"	 case	

(Tibshirani,	 1996).	Note	 that	 the	high-dimensional	 scenario	 is	only	 challenging	 if	 the	p	variable	are	

considered	 explanatory,	 not	 if	 they	 are	 considered	 as	 the	 data	 to	 be	 explained.	 Despite	 early	

approaches	to	"multivariate"	brain-behavior	associations	(cf.	K.J.	Friston	et	al.,	2008;	Worsley,	Poline,	

Friston,	&	Evans,	1997),	the	popularity	of	SL	methods	only	peaked	after	being	rebranded	as	"mind-

reading",	 "brain	 decoding",	 and	 "multivariate	 pattern	 analysis"	 (Haynes	&	 Rees,	 2005;	 Kamitani	 &	

Tong,	2005).	The	conceptual	appeal	of	this	new	access	to	the	neural	correlates	of	psychological	and	
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pathophysiological	processes	was	flanked	by	the	availability	of	the	necessary	computing	power	and	

memory	 resources.	 Last	 but	 not	 least,	 there	 is	 an	 always-bigger	 interest	 in	 and	 pressure	 for	 data	

sharing,	 open	 access,	 and	 building	 "big-data"	 repositories	 in	 neuroscience	 (Devor	 et	 al.,	 2013;	

Gorgolewski	 et	 al.,	 2014;	 Kandel	 et	 al.,	 2013;	Markram,	 2012;	 Poldrack	&	Gorgolewski,	 2014;	 Van	

Essen	 et	 al.,	 2012).	 As	 the	 dimensionality	 and	 complexity	 of	 neuroimaging	 datasets	 increases,	

neuroscientific	 investigations	will	 probably	benefit	 increasingly	 from	SL	methods	and	 their	 variants	

adapted	to	 the	data-intense	setting	 (e.g.,	Bzdok	et	al.,	2016;	Engemann	&	Gramfort,	2015;	Kleiner,	

Talwalkar,	Sarkar,	&	Jordan,	2012;	Zou,	Hastie,	&	Tibshirani,	2006).	

It	is	important	to	emphasize	that	these	SL	algorithms	came	in	a	variety	of	flavors.	They	can	be	more	

easily	interpretable	(e.g.,	linear	support	vector	machines)	or	less	interpretable	(e.g.,	kernel-based	or	

ensemble-based	 models),	 be	 parametric	 with	 predefined	 model	 structure	 (e.g.,	 hidden	 Markov	

models)	or	non-parametric	with	adaptive	model	structure	(e.g.,	hierarchical	dirichlet	processes),	and	

they	can	be	grouped	as	discriminative	(e.g.,	 logistic	regression)	versus	generative	(e.g.,	 latent	factor	

models	including	independent	component	analysis).	

The	 null-hypothesis	 testing	 framework	 in	 CS	 finds	 a	 close	 relative	 in	 the	 concept	 of	 Vapnik-

Chervonenkis	dimensions	 in	statistical	 learning	theory.	The	VC	dimensions	mathematically	formalize	

the	 circumstances	 under	 which	 a	 pattern-learning	 algorithm	 can	 successfully	 distinguish	 between	

points	and	extrapolate	to	new	examples	(Vapnik,	1989,	1996).	Note	that	this	inductive	logic	to	learn	a	

general	 principle	 from	 examples	 contrasts	 the	 deductive	 logic	 of	 hypothesis	 falsification.	 In	

particular,	VC	dimensions	provide	a	probabilistic	measure	of	whether	a	certain	model	is	able	to	learn	

a	distinction	given	a	dataset.	As	one	of	 the	most	 important	 results	 from	SL	 theory,	 the	number	of	

configurations	one	can	obtain	from	a	classification	algorithm	grows	polynomially,	while	the	error	 is	

decreasing	exponentially	(Wasserman,	2013).	Like	degrees	of	freedom	in	null-hypothesis	testing,	the	

VC	dimensions	are	unrelated	to	the	target	function,	as	the	"true"	mechanisms	underlying	the	studied	

phenomenon	 in	 nature.	 Although	 the	VC	 dimensions	 are	 the	 best	 formal	 concept	 to	 derive	 errors	

bounds	in	SL	theory	(Abu-Mostafa,	Magdon-Ismail,	&	Lin,	2012),	they	can	only	be	explicitly	computed	
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for	simple	models.	In	practice,	the	out-of-sample	performance	is	evaluated	by	cross-validation.	This	is	

the	de	facto	standard	to	obtain	an	unbiased	estimate	of	a	model's	capacity	to	generalize	beyond	the	

sample	at	hand	(Bishop,	2006;	Hastie	et	al.,	2001).	Model	assessment	is	done	by	training	on	a	bigger	

subset	of	the	available	data	(i.e.,	training	set	for	in-sample	performance)	and	subsequent	application	

of	 the	 trained	 model	 to	 the	 smaller	 remaining	 part	 of	 data	 (i.e.,	 test	 set	 for	 out-of-sample	

performance),	which	is	assumed	to	share	the	same	distribution.	Cross-validation	thus	permutes	over	

the	sample	in	data	splits	until	the	class	label	(i.e.,	categorical	target	variable)	of	each	data	point	has	

been	predicted	once.		

	

Relationship	between	classical	inference	and	statistical	learning	in	neuroimaging	research	

There	is	an	often-overlooked	misconception	that	models	with	high	explanatory	power	do	necessarily	

exhibit	high	predictive	power	(Lo	et	al.,	2015;	Wu	et	al.,	2009).	On	a	general	basis,	CS	and	SL	do	not	

judge	 findings	 by	 the	 same	 aspects	 of	 evidence	 (Lo	 et	 al.,	 2015;	 Shmueli,	 2010).	 In	 neuroimaging	

papers	based	on	classical	hypothesis-driven	inference	p	values	(and	less	often	confidence	intervals)	

are	ubiquitously	 reported.	 It	has	been	previously	emphasized	 (K.J.	 Friston,	2012)	 that	p	values	and	

effect	sizes	reflect	in-sample	estimates	in	a	retrospective	inference	regime	(CS).	These	metrics	find	an	

analogue	in	out-of-sample	estimates	issued	from	cross-validation	in	a	prospective	prediction	regime	

(SL).	While	the	retrospective	(CS)	versus	prospective	(SL)	distinction	is	an	important	property	of	the	

conceptual	 frameworks,	 fitted	CS	model	 can	 also	 be	 used	 in	 a	 prospective	 aim	 and	 SL	models	 are	

routinely	 estimated	 based	 on	 existing	 data	 in	 practice.	 In-sample	 effect	 sizes	 are	 typically	 an	

optimistic	estimate	of	the	"true"	effect	size	(inflated	by	high	significance	thresholds),	whereas	out-of-

sample	effect	sizes	can	be	unbiased	estimates	of	the	"true"	effect	size.	Note	however	that	in-sample	

estimates	are	unbiased	and	thus	not	optimistic	 if	 the	"true"	model	 is	known.	 In-sample	effect	sizes	

are	 a	priori	 unbiased	estimates	of	 the	 true	effects.	However,	 in	 current	practice,	 these	effects	 are	

often	 selected	 and	 measured	 on	 the	 same	 dataset,	 yielding	 to	 optimistic	 bias.	 Reporting	 instead	

effects	sizes	estimated	on	the	test	set	does	not	suffer	from	such	biases.	
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When	 looking	at	neuroimaging	research	through	the	CS	 lens,	 statistical	estimation	revolves	around	

solving	the	multiple	comparisons	problem	(Thomas	E.	Nichols,	2012;	T.E.	Nichols	&	Hayasaka,	2003).	

From	the	SL	stance,	however,	it	is	the	curse	of	dimensionality	and	overfitting	that	statistical	analyses	

need	 to	 tackle	 (Domingos,	 2012;	 K.J.	 Friston	 et	 al.,	 2008).	 In	 typical	 neuroimaging	 studies,	 CS	

methods	 typically	 test	 one	 hypothesis	many	 times	 (i.e.,	 the	 null	 hypothesis),	whereas	 SL	methods	

typically	search	through	thousands	of	different	hypotheses	in	a	single	process	(i.e.,	walking	through	

the	function	space	by	numerical	optimization)	(MacKay,	2003,	chapter	41).	The	high	voxel	resolution	

of	 common	 brain	 scans	 offers	 parallel	 measurements	 of	 >100,000	 brain	 locations.	 In	 a	 mass-

univariate	regime,	such	as	after	fitting	voxel-wise	GLMs,	the	same	statistical	test	is	applied	>100,000	

times.	The	more	often	the	investigator	tests	a	hypothesis	of	relevance	for	a	brain	location,	the	more	

locations	 will	 be	 falsely	 detected	 as	 relevant	 (false	 positive,	 Type	 I	 error),	 especially	 in	 the	 noisy	

neuroimaging	 data.	 The	 issue	 consists	 in	 too	 many	 simultaneous	 statistical	 inferences.	 From	 a	

general	perspective,	all	dimensions	in	the	data	(i.e.,	voxel	variables)	are	implicitly	treated	as	equally	

important	and	no	neighborhoods	of	most	expected	variation	are	statistically	exploited	(Hastie	et	al.,	

2001).	Hence,	the	absence	of	complexity	restrictions	during	the	statistical	modelling	of	neuroimaging	

data	takes	a	heavy	toll	at	the	final	inference	step.	

As	an	 intriguing	hybrid	analysis	between	classical	and	 learning	 regimes,	 the	"searchlight"	approach	

for	 "pattern-information	 analysis"	 enabled	 whole-brain	 assessment	 of	 local	 neighborhoods	 of	

predictive	 patterns	 of	 neural	 activity	 fluctuations	 (N.	 Kriegeskorte,	 Goebel,	 &	 Bandettini,	 2006).	 It	

combines	 the	 generalization	 of	 signals	 carried	 in	 sets	 of	 local	 voxel	 signals	 (i.e.,	whehter?;	 unit	 of	

observation:	voxel	groups)	but	nevertheless	quantifies	the	brain-behavior	associations	for	each	brain	

voxel	 at	 the	 brain-global	 level	 akin	 to	mass-univariate	 analyses	 (i.e.,	 where?;	 unit	 of	 observation:	

single	voxels	of	the	whole	brain).	

In	 neuroimaging	 research,	 statistical	 analysis	 grounded	 in	 CS	 and	 SL	 is	 closely	 related	 to	encoding	

models	and	decoding	models,	respectively	(Nikolaus	Kriegeskorte,	2011;	Naselaris,	Kay,	Nishimoto,	&	

Gallant,	 2011;	 Pedregosa,	 Eickenberg,	 Ciuciu,	 Thirion,	&	Gramfort,	 2015).	 Encoding	models	 regress	



	 11	

the	data	against	 a	design	matrix	with	potentially	many	explanatory	 columns	of	 stimulus	 (e.g.,	 face	

versus	 house	 pictures),	 task	 (e.g.,	 to	 evalute	 or	 to	 attend),	 or	 behavioral	 (e.g.,	 age	 or	 gender)	

indicators	 by	 fitting	 general	 linear	 models.	 In	 contrast,	 decoding	 models	 typically	 predict	 these	

indicators	by	training	and	testing	classification	algorithms	on	different	splits	from	the	whole	dataset.	

In	 CS	 parlance,	 the	 encoding	 model	 fits	 the	 neural	 activity	 data	 by	 the	 beta	 coefficients,	 the	

dependent	 variables,	 according	 to	 the	 indicators	 in	 the	 design	 matrix	 columns,	 the	 independent	

variables.	 An	 explanation	 for	 decoding	models	 in	 SL	 jargon	would	 be	 that	 the	model	weights	of	 a	

classifier	 are	 fitted	 on	 the	 training	 set	 of	 the	 input	 data	 to	 predict	 the	 class	 labels,	 the	 target	

variables,	and	are	subsequently	evaluated	on	the	test	set	by	cross-validation	to	obtain	their	out-of-

sample	generalization	performance.	Put	differently,	a	GLM	fits	coefficients	of	stimulus/task/behavior	

indicators	on	neural	activity	data	for	each	voxel	separately	given	the	design	matrix	(Naselaris	et	al.,	

2011),	while	 classifiers	 predict	 entries	 of	 the	 design	matrix	 for	 all	 voxels	 simultaneously	 given	 the	

neural	 activity	 data	 (Pereira,	 Mitchell,	 &	 Botvinick,	 2009).	 A	 key	 difference	 between	 CS-mediated	

encoding	 models	 and	 SL-mediated	 decoding	 models	 thus	 pertains	 to	 the	 direction	 of	 inference	

between	brain	space	and	indicator	space	(K.J.	Friston	et	al.,	2008;	Varoquaux	&	Thirion,	2014).	These	

considerations	also	reveal	the	intimate	relationship	of	CS	models	to	the	notion	of	so-called	forward	

inference,	while	SL	relate	to	formal	reverse	inference	in	functional	neuroimaging	(S.	B.	Eickhoff	et	al.,	

2011;	Poldrack,	2006;	Varoquaux	&	Thirion,	2014;	Yarkoni	et	al.,	2011).	Forward	inference	relates	to	

encoding	models	by	testing	the	probability	of	observing	activity	given	knowledge	of	a	psychological	

process,	 while	 reverse	 inference	 relates	 to	 brain	 "decoding"	 by	 testing	 the	 probability	 of	 a	

psychological	process	being	present	given	knowledge	of	activation	in	a	brain	location.	

This	 is	 contrasted	 by	 the	 high-dimensional	 SL	 regime,	 where	 the	 initial	 model	 choice	 by	 the	

investigator	determines	the	complexity	restrictions	to	all	data	dimensions	(i.e.,	not	single	voxels)	that	

are	 imposed	 explicitly	 or	 implicitly	 by	 the	model	 structure.	Model	 choice	 predisposes	 existing	 but	

unknown	low-dimensional	neighborhoods	in	the	full	voxel	space	to	achieve	the	prediction	task.	Here,	

the	toll	is	taken	at	the	beginning	because	there	are	so	many	different	alternative	model	choices	that	
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would	impose	a	different	set	of	complexity	constraints.	For	instance,	signals	from	"brain	regions"	are	

likely	to	be	well	approximated	by	models	that	impose	discrete,	locally	constant	compartments	on	the	

data	 (e.g.,	 k-means	 or	 spatially	 constrained	Ward	 clustering).	 Tuning	model	 choice	 to	 signals	 from	

macroscopical	 "brain	networks"	 should	 impose	overlapping,	 locally	 continuous	data	 compartments	

(e.g.,	 independent	 component	 analysis	 (Beckmann,	 DeLuca,	 Devlin,	 &	 Smith,	 2005)	 or	 sparse	

principal	 component	 analysis	 (Zou	 et	 al.,	 2006)).	 Knowledge	 of	 such	 effective	 dimensions	 in	 the	

neuroimaging	 data	 is	 a	 rare	 opportunity	 to	 simultaneously	 reduce	 the	 model	 bias	 and	 model	

variance,	 despite	 their	 typically	 inverse	 relationship.	 Statistical	models	 that	 overcome	 the	 curse	 of	

dimensionality	typically	incorporate	an	explicit	or	implicit	metric	for	such	anisotropic	neighborhoods	

in	the	data	(Bach,	2014;	Bzdok,	Eickenberg,	Grisel,	Thirion,	&	Varoquaux,	2015;	Hastie	et	al.,	2001).	

Viewed	 from	 the	 bias-variance	 tradeoff,	 this	 successfully	 calibrates	 the	 sweet	 spot	 between	

underfitting	 and	 overfitting.	 Viewed	 from	 statistical	 learning	 theory,	 the	 VC	 dimensions	 can	 be	

reduced	 and	 thus	 the	 generalization	 performance	 increased.	 Applying	 a	 model	 without	 such	

complexity	restrictions	to	high-dimensional	brain	data,	generalization	becomes	difficult	to	impossible	

because	all	directions	 in	 the	data	are	treated	equally	 in	with	 isotropic	structure.	At	 the	root	of	 the	

problem,	data	 samples	 seem	to	be	evenly	distributed	 in	high-dimensional	data	 scenarios	 (Bellman,	

1961).	The	learning	algorithm	will	not	be	able	to	see	through	the	noise	and	will	thus	overfit.	In	fact,	

these	 considerations	 explain	 why	 the	multiple	 comparisons	 problem	 is	 closely	 linked	 to	 encoding	

studies	 and	 overfitting	 is	 more	 closely	 related	 to	 decoding	 studies	 (K.J.	 Friston	 et	 al.,	 2008).	

Moreover,	 it	 offers	 explanations	 as	 to	why	 analyzing	 neural	 activity	 in	 a	 region	 of	 interest,	 rather	

than	the	whole	brain,	simultaneously	alleviates	both	the	multiple	comparisons	problem	(called	"small	

volume	 correction"	 in	 CS	 studies)	 and	 the	 overfitting	 problem	 (called	 "feature	 selection"	 in	 SL	

studies).	
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Conclusion	

Statistical	 inference	 is	a	hetergeneous	concept;	not	only	 in	 the	 imaging	neurosciences.	Historically,	

the	 invention	 and	 application	of	 statistical	methods	has	 always	been	driven	by	practical	 necessity.	

The	constantly	growing	neuroimaging	repositories	might	therefore	necessitate	a	categorical	change	

in	 statistical	 methodology.	 Classical	 statistics	 has	 mostly	 been	 invented	 for	 small-sample	

experimental	studies,	but	is	alone	insufficient	for	the	large-scale	analysis	of	internationally	acquired,	

multi-modal	 neuroimaging	 repositories	 with	 complex	 meta-information.	 It	 is	 suitable	 to	 analyse	

marginal	 statistics,	 i.e.	 the	 signal	 present	 in	 each	 brain	 image	 location,	 irrespective	 of	 others	

(encoding).	 In	 contrast,	 SL	 consider	 ensembles	 of	 brain	 image	 locations,	 which	 opens	 the	 way	 to	

conditional	 interpretation	 (information	 carried	 by	 a	 voxel,	 given	 the	 others)	 and	 discriminative	

reasoning	(diagnosis	and	decoding).	
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