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"predictions, but not inferences, forecast what will happen" 

White (1971) 
 

1. Introduction 
Psychiatric patients are treated every day by medical doctors based on clinical guidelines grounded in 
group definitions. Therapeutic intervention for a particular patient, however, frequently follows a 
trial-and-error path (cf. Rush et al., 2006). On average, only about 50% of patients benefit from a 
specific psychotropic drug therapy (Wong et al., 2010). Similar failure rates apply to common 
psychotherapeutic treatments (Hofmann et al., 2012). To render clinical care more effective, brain-
imaging and genomics are among the most promising, yet expensive avenues. In research on the 
neural and genetic basis of psychiatric disease, the prevailing research ideology aims to discover new 
pathophysiological mechanisms as a stepping-stone to then reduce suffering of psychiatric patients 
(Insel and Cuthbert, 2015). Instead of trying to exploit newly discovered disease mechanisms towards 
novel treatments that help patient groups on average, an alternative research agenda is coming into 
reach over recent years. A fast and cost-effective strategy is to accurately predict which of the 
currently existing treatment options is likely to work best for one particular patient (Bzdok and 
Meyer-Lindenberg, 2018; Perna and Nemeroff, 2017; Stephan et al., 2017b). Increasing 
individualization of therapeutic intervention in precision psychiatry would also open the opportunity 
to automatically derive the diagnosis or expected disease course in single patients from data. 
Because psychiatric disorders result from disturbed brain biology, quantitative measures from in-vivo 
brain-imaging is ready for such predictive modeling approaches because structural, functional, or 
diffusion magnetic resonance imaging (sMRI, fMRI, dMRI) and sometimes positron emission 
tomography (PET) are already available in most modern psychiatric hospitals. Moreover, such 
spatially or temporally highly-resolved imaging techniques produce data of sufficient quantity and 
information granularity on which to apply data-driven statistical techniques (Eyre et al., 2016). 
 
2. Examples of brain network phenotyping to improve predictions in single individuals 
Several neuroscience studies have already demonstrated the clinical potential of combining 
extensive brain-imaging data with predictive data analytics towards important goals of precision 
medicine in psychiatry. As a first example, Drysdale and investigators (2017) were able to forecast 
the treatment response in a large fMRI study on patients suffering from depression (n=1188). The 
patients were automatically subdivided into four groups by applying data-driven clustering 
algorithms (hierarchical ward clustering) to their limbic and frontostriatal resting-state network data. 
Each of the four imaging-derived depression types was characterized by a particular pattern of neural 
dysfunction and could be linked to a distinct symptom constellation. The neurobiologically defined 
depression categories were showed to be clinically relevant as the subgroups differed in symptom 
reduction (according to Hamilton rating scale for depression) after a five-week treatment with 



repetitive transcranial magnetic stimulation of the dorsomedial prefrontal cortex (Fig. 1). This 
neurostimulation method modulates connectivity of brain networks and is usually applied in 
refractory depression. Pattern-prediction algorithms (support vector machines) were built to predict 
individual treatment response based on brain connectivity data. The efficacy of treatment was 
correctly forecasted in nine out of ten new patients that were not involved in the previous model 
building procedure. Hence, a proof of concept is provided by a seminal stimulation-MRI investigation 
in major depressive disorder that brain-derived types of mental disease may enable the selection of 
the most promising treatment option in each particular patient.  
This brute-force and ad-hoc character of many successful pattern-prediction approaches was shown 
in a neuroimaging study in aphasia to, in certain cases, also allow for insights into disease 
pathophysiology. Brodersen and colleagues (2011) acquired experimental fMRI data of aphasic 
patients and healthy controls who listened to speech and time-reversed speech stimuli (n=37). To 
estimate task-induced changes in directional neural coupling mechanisms, the investigators built a 
dynamic causal model of relevant auditory regions and the connections between these brain areas. 
The task-evoked thalamotemporal connectivity modulations were fed into a machine learning 
algorithm (support vector classification) that automatically derived rules how to discriminate disease 
state. The classification algorithm was able to tell apart new patients and controls almost perfectly 
(98% prediction accuracy). Additionally, the predictive modelling approach was directly 
mechanistically interpretable by revealing disease-specific brain connections in patients with aphasia 
(Fig. 2). This second example demonstrates that often heuristic machine-learning methods can be 
grounded in mechanistically meaningful neurobiological quantities to offer means for a more 
complete understanding of pathophysiology and predictability of brain disorders. 
Our last example revisited a long-standing speculation about accelerated brain aging in schizophrenia 
by quantifying a scientifically valuable and clinically exploitable brain phenotype. Kraepelin himself 
has already suspected a neurodegenerative character of schizophrenia which is why he called the 
disease “dementia praecox” (Kraepelin, 1899). More recently, Koutsouleris and investigators (2014) 
employed predictive learning algorithms (support vector regression) to estimate brain age from the 
structural MRI scans of healthy subjects (n=800). The obtained trained algorithm was then used to 
predict brain age from brain structure of at-risk individuals who exposed sub-threshold psychotic 
symptoms and patients diagnosed with schizophrenia (n=230). The discrepancy between model-
derived brain age and the actual age of the subjects increased from at-risk over recent onset to 
recurrent disease states. Moreover, the brain phenotype of a prematurely aged brain in 
schizophrenia was predictive of disease status in specific individuals (Fig. 3). The predictive modeling 
strategy could hence quantitatively formalize accelerated aging effects for successful prediction of 
disease state on a single-subject level, which substantiated a classical pathophysiological hypothesis 
in schizophrenia research.  
The collection of examples exposes how the alliance of predictive modeling analytics and brain 
scanning can enable the individual prediction of disease state, treatment response, and clinical 
course in brain disorders. Against widespread belief, the fusion of “big data” and emerging statistical 
technologies also has the potential to open alternative windowsn on pathophysiological mechanisms 
in major psychiatric disorders. 
 
3. Proposing a typology of “prediction” 
Empirical research in medicine and psychology frequently invokes three different notions of how 
findings may allow for statements about the future of a particular individual (Bzdok, 2017a; Casella 
and Berger, 2002; Gabrieli et al., 2015; Woo et al., 2017): 

i) Correlation, such as Pearson or Spearman’s rank correlation, computes a simple similarity 
metric between two series of measurements. For instance, the correlation between amygdala 
activity changes measured in an fMRI experiment and overall disease severity could be 
computed in a group of patients with schizophrenia. A high correlation between the two 
variables could motivate a deeper examination of the relationship between amygdala fMRI 
activity and disease severity. In this data-exploration setting, the goal is not to extract a model 
that embodies the discovered statistical relationship. As no model parameters are being 



estimated in common correlation analysis, the pattern interrogated in the data cannot be 
directly shipped to other researchers or clinicians for application to a new individual. 

ii) Linear regression approaches, such as ANOVA, ANCOVA, and MANOVA, estimates model 
parameters that encapsulate the mapping from explanatory (independent) input variables to 
explained (dependent) output variables. For instance, the linear relationship of how fMRI 
activity changes in the amygdala relate to the presence of schizophrenia symptoms can be 
extracted in a patient group. The obtained model embodies how the symptom severity can be 
expected to increase or decrease with a higher or lower fMRI activity in the amygdala in the 
subject sample at hand. The relevance of a particular explanatory variable can be quantified by 
comparison to the estimated importance of other explanatory variables, such as the measured 
fMRI activity in the prefrontal cortex, auditory cortex, fusiform gyrus, or other candidate brain 
regions. In this setting, a model has been generated that could be shipped to other researchers 
and psychiatrists for reuse in new individuals. However, for many linear-regression analyses 
there is a small tradition to explicitly ascertain that the isolated pattern still holds in subjects 
who the model has not yet seen. 

iii) Single-subject prediction, such as routinely performed with support vector machines, random 
forests, or artificial neural-network algorithms, is typically achieved by identifying relationships 
in one set of subjects as a function of how these patterns persists in other individuals from a 
different set of subjects. Here, model parameters are typically estimated on some data while 
the emerging model is explicitly put to the test in some independent data from unseen 
individuals (Shalev-Shwartz and Ben-David, 2014). Such primary emphasis on model 
performance on single individuals can sometimes have the side effect of hindering 
understanding how the output variable is expected to change as specific input variables 
increase or decrease (Goodfellow et al., 2016; Hastie et al., 2001). For instance, pattern-
recognition algorithms could possibly be built to derive optimal drug dosage suggestions for 
patients with schizophrenia from whole-brain fMRI activity, as measured from potentially tens 
of thousands of local brain measurements being the input variables for a given patient. In this 
setting, the investigator typically pursues the main goal to achieve the best-possible model 
accuracy for the optimal drug dosage in any single patient, even if this objective may in certain 
cases come at the expense of some reduced model interpretability. 

In our opinion, predictions of type (iii) may be particularly tuned to the ambitions of precision 
medicine in psychiatry. This analysis paradigm, routinely practiced in many applications of pattern-
recognition algorithms, is centered around evaluating the capacity of already extracted models to 
derive quantities of interest from new, potentially later encountered individuals. If an already 
extracted model embodying an identified relationship, reflected in the estimated parameters, is 
assessed in new individuals whose data were not used to estimate the parameters, the statistical 
analysis can be said to be an out-of-sample prediction. This form of building models from data has 
been explicitly optimized for and is naturally applicable to a single data point, such as one whole-
brain scan or one sequenced genome of a particular individual. Whether an obtained model is useful 
in practice is judged based on its performance in achieving accurate predictions in independent 
individuals1. One may view these evaluation practices as more conservative measures when the goal 
is reliable single-subject predictions in patients admitted to a psychiatry hospital in the future (Bzdok 
and Meyer-Lindenberg, 2018; James et al., 2013). In contrast, most correlation- and linear-
regression-type analyses (i and ii) reflect in-sample predictions where model estimation and 
evaluation are typically performed in the same subject sample. In this analysis paradigm, the ensuing 
conclusions could be closely adapted to the particular subject sample at hand. Please also note that 
out-of-sample prediction is distinct from a replication study where the same statistical approach is 
entirely repeated on two different subject samples, rather than extracting a model from a first set of 
subjects while evaluating the performance of that model in an independent second set of subjects. 
 

                                                      
1 Niels Bohr put this point in the following words: “Prediction is very difficult, especially if it's about 
the future”. 



4. Single-subject prediction is important for personalized medicine 
We invite the reader to imagine a future of centralized medical care, where comprehensive health-
related information is available on a majority of the citizens, ignoring important technical and ethical 
challenges for a moment (Leonelli, 2016; O'Neil, 2016). Scientific discovery in such rich data resources 
has been a primary focus of the statistical methodology traditionally used in empirical research in 
medicine and psychology (Bzdok, 2017b; Efron and Hastie, 2016; James et al., 2013). This modeling 
goal is for instance especially suited to ask, “Which gene locations contribute to or are associated 
with schizophrenia?” Perhaps counterintuitively, thus identified genetic risk variants may not in all 
cases serve best to detect whether a given individual is affected by schizophrenia or is healthy 
(Shmueli, 2010). This is because modeling for prediction typically asks a different kind of research 
question: “Which gene locations are useful to distinguish schizophrenic versus healthy individuals?” 
Finding such answers follows the heuristic agenda of prioritizing successful pattern-recognition to 
identify any relationship in the data that is able to derive the specified outcome in independent data, 
but may put smaller emphasis on scientific insight into the neurobiological underpinnings of the 
schizophrenia disease. As further example, scientific discovery inquires which genes provide 
mechanistic insight into explaining why a drug treatment for schizophrenia works in patients on 
average (James et al., 2013). Yet, pattern-recognition algorithms prioritize predictive genes that can 
reliably disambiguate whether a drug treatment will work in one specific patient with schizophrenia. 
 
The data-driven identification of predictive principles from complex information has been a 
dominant focus in the machine-learning community (Breiman, 2001; Goodfellow et al., 2016). 
Pattern-recognition algorithms have frequently been employed with the goal to achieve the best 
possible outcome detection (Hastie et al., 2001). Typically based on modest a-priori knowledge (Abu-
Mostafa et al., 2012), many algorithms in machine learning are estimated to deduce an output 
variable (e.g., presence of schizophrenia) from potentially many input variables (e.g., lifestyle and 
demographic indicators, brain function, neuropsychological tests). For qualitative output variables 
(e.g. healthy group versus schizophrenic group or drug responder versus non-responder), the 
modeling process can perform classification. For quantitative response variables (e.g. schizophrenia 
severity or probability of responding to a candidate drug), pattern-recognition algorithms are built 
for regression from potentially highly resolved input data from possibly different sources (Hastie et 
al., 2001). In the following, several aspects are highlighted that characterize methods embraced by 
machine learning with the prominent differences to tools often used in classical statistics. In 
particular, the distinct properties of both modeling approaches shed light on why the practices of 
pattern-learning methods are well suited to achieving accurate predictions at the single-subject level, 
whereas many traditional statistical approaches are frequently used in medicine and psychology to 
discern the “trueness” of an effect at the group level. 
 
The prediction paradigm, such as practiced in machine learning community, departs in important 
ways from the inference paradigm grounded in classical null-hypothesis testing in types of 
conclusions that are to be drawn from data (Breiman, 2001; Bzdok, 2017a; Efron and Hastie, 2016). 
The statistical paradigms anchored at inference or prediction are common in trying to evaluate 
whether an effect found in some data extrapolates to another sample of observations drawn from 
the same underlying population (Casella and Berger, 2002; Efron, 2012). To draw statistical 
inference, mainstream statistics has put a major emphasis on a framework revolving around 
rejection of a null-hypothesis in favor of an alternative hypothesis that is contradicting the status 
quo. Instead, many machine-learning applications have mainly focused on building pattern-
recognition algorithms that predict the discovered patterns in independent, new data that did not 
influence model estimation. In classical statistics, inferential conclusions are drawn by formally 
testing for the existence of an effect expressed under the null-hypothesis (e.g., a gene is not 
associated with schizophrenia) in opposition to the alternative hypothesis (e.g., a gene is associated 
with schizophrenia). The ensuing p-value indicates whether data from the subject sample at hand are 
too extreme to occur under the null hypothesis.  
 



While null-hypothesis testing typically takes the form of a single-step approach, the success of 
precision psychiatry will probably depend on predictive models that can be extracted and then 
“shipped” in a two-step approach. In classical null-hypothesis testing, the p-value is computed on the 
entire data from a particular subject sample in a single process. P-values are commonly obtained 
from all examined individuals (in-sample) and this quantitative outcome can usually not be used to 
test for the same statistical relationship in a later encountered single individual. In contrast, methods 
common in machine learning can quantify the prediction performance of a previously built algorithm 
applied to untapped data, such as from a new incoming patient, as a performance metric and 
immediate practical usefulness. This process of evaluating the prediction performance of learning 
algorithms is typically performed by a two-step procedure called cross-validation (Shalev-Shwartz 
and Ben-David, 2014). In a first step, the machine-learning algorithm is built on a larger part of the 
dataset. In a second step, emerging candidate algorithms are evaluated and selected on unused data 
(Hastie et al., 2001). Because all conditions for independent, identically distributed observations are 
usually met for the left-out data, the out-of-sample prediction performance on the testing data 
samples can quantify how likely the same pattern could be detected in future, not yet seen patients.  
 
It is this two-step nature of ensuring model generalization by means of cross-validation procedures 
that attempts to certify predictive models to be “shippable” to other mental health institutions for 
detection of a previously discovered pattern for a single individual (Arbabshirani et al., 2017; Stephan 
et al., 2017a). The option for single-subject prediction is especially relevant in precision psychiatry: 
the brain scans or genetic profile of a new patient can be fed into the (previously built) pattern-
recognition algorithm to estimate a clinical outcome variable (Woo et al., 2017). Concretely, an 
association between a gene and a psychiatric disorder like schizophrenia with a statistically 
significant p-value does not necessarily imply that the same gene will be the best choice to 
successfully predict whether a given individual is affected by schizophrenia. Conversely, an effect 
that has been empirically shown to be highly predictive of schizophrenia disease based on cross-
validation in independent individuals does not always go hand-in-hand with classical statistical tests 
evaluated to a significant p-value (Bzdok, 2017a; Shmueli, 2010). For these reasons, cross-validated 
machine-learning algorithms and more traditional tools for null-hypothesis testing can sometimes 
lead to diverging conclusions in certain practical analysis settings (see Fig. 4 for an example). 
 
Moreover, many tools frequently used in machine learning may also be especially suited to achieve 
the goals of precision psychiatry because they are naturally capable of handling hundreds or 
thousands of outcomes at once (Bzdok and Meyer-Lindenberg, 2018; Caruana, 1998; Rahim et al., 
2017). Classical null-hypothesis testing in medicine usually compares two possible output states that 
are expressed in the null and alternative hypothesis (Wasserstein and Lazar, 2016) - the non-
preferred null-hypothesis and the alternative hypothesis posited by the investigator - with limited 
scaling to more possible options (Efron, 2012). The challenging question in precision psychiatry is 
usually not if a patient suffers from a psychiatric disorder or not. Instead, the psychiatrist rather 
decides which specific psychiatric disorder the patient is suffering from. Analogously, it may be 
clinically more relevant which treatment option a particular patient should be assigned to rather 
than asking whether a given patient needs a therapy or not. In fact, even when comparing a number 
of disease groups based on ANOVA, the null-hypothesis commonly being tested is whether all groups 
are equal (null-hypothesis) or not (alternative hypothesis) (Casella and Berger, 2002). For instance, 
one disease group being different from 9 other ones or 10 disease groups being different in every 
possible pair equally lead to rejection of the null-hypothesis of no difference. For these predictions of 
several diagnoses or treatment options in parallel, machine learning is especially suitable. This is 
because many machine-learning algorithms can be easily extended to the prediction of a large array 
of different outcomes in the same algorithm building process (Breiman and Friedman, 1997; 
Caruana, 1998; Rahim et al., 2017). In this way, several machine-learning approaches readily offer 
the opportunity to predict many clinical endpoints in a single patient. For instance, a machine-
learning algorithm could be built to derive i) which disease the patient is suffering from (e.g. 
schizophrenia versus bipolar disorder versus major depression), ii) which disease course can be 



expected (e.g. single episode versus recurrent versus chronic disease course), and iii) which 
treatment options will be most effective (e.g. antipsychotic drugs versus antidepressant drugs versus 
cognitive behavioral therapy versus their combinations). 
 
5. Challenges to overcome 
Forecasting diagnosis, disease course, and effectiveness of treatment options in incoming patients 
offers a promising opportunity for improving medical care for psychiatric patients. However, several 
challenges still need to be overcome: From a technical point of view, prediction focused statistical 
approaches typically require large amounts of data (Henke et al., 2016; Jordan et al., 2013). So called 
“big data” demand special data management skills and infrastructure that are today seldom available 
at clinical and research institutions (Bzdok and Meyer-Lindenberg, 2018). To further mature training 
of pattern-recognition algorithm, predictable patterns have been advocated to fulfill several criteria 
before translation into clinical practice (Woo and Wager, 2015). These authors suggested that an 
ideal predictive model should be (i) highly successful in diagnostic performance including both 
sensitivity and specificity, (ii) useful in terms of neuroscientific research, (iii) composed of precisely 
defined algorithms, and (iv) generalizable across different clinical settings (e.g., data acquisition 
means, geographic locations, and patient populations). Additionally, the application of predictive 
models must be checked for the economic efficiency, especially in light of the considerable costs of 
brain-imaging modalities such as sMRI, fMRI, dMRI and PET (Gabrieli et al., 2015). Furthermore, 
ethical and societal aspects will probably become an important recurring theme in discussing the 
future of precision medicine (Gabrieli et al., 2015; O'Neil, 2016). 
 
6. Classical null-hypothesis testing is not obsolete 
Tools for statistical hypothesis testing and more recently emerged machine learning techniques can 
be used to draw different types of conclusions from data. Whereas the core interest of machine-
learning applications is to predict future events on the basis of patterns observed in data, classical 
statistics applications are probably more often used to infer scientific insight from the effects 
observed in data (White, 1971). Both modeling paradigms can serve distinct statistical purposes in 
improving psychiatric practice based on brain-imaging and genetics (Bzdok and Yeo, 2017; Shmueli, 
2010). Depending on the ultimate clinical or research question, a different set of statistical tools may 
suggest itself as more appropriate (James et al., 2013). It is therefore important for investigators and 
psychiatrists to acknowledge the partly diverging modeling goals and scopes of interpretation of 
these two distinct statistical cultures (Breiman, 2001; Bzdok, 2017a).  
 
Traditional null-hypothesis testing emerged in the early 20th century. This was a time in history when 
data were rare and expensive to acquire (Efron and Hastie, 2016; Gigerenzer, 1993). Well-controlled 
research experiments were carefully designed in advance. Nowadays, such datasets with few 
measured variables are still the norm in much research in psychology and medicine. Many early 
statistical tools were especially developed for such settings aiming at understanding the relationship 
between a few variables. If the goal is to examine whether an effect exists or which specific input 
variables have most impact on an output variable, classical statistics based on null-hypothesis testing 
is arguably still among the best tools. In practice, the focus routinely relies on the statistical analyses 
of few variables that tend to yield high interpretability, rather than perusing data for complex 
patterns that are predictive. Ideally of course, one would hope to achieve both interpretability and 
predictability. Several recent investigations have successfully combined “black-box” pattern-
recognition analyses and model components that can be readily introspected for scientific 
understanding (cf. Brodersen et al., 2011). 
 
Today, single-subject prediction becomes always more feasible due to the recent co-occurrence in 
data availability, computing power, and cheaper data storage (Goodfellow et al., 2016; Manyika et 
al., 2011). Brain-scanning and genetic measurements in psychiatry produce massive amounts of data 
at high granularity that classical statistical tools have not initially been invented to tackle (Efron, 
2012). In contrast, machine learning was designed to extract patterns from such observational data 



that was frequently acquired outside of a carefully controlled experimental context. Additionally, 
many machine-learning approaches specifically motivated for achieving prediction at scale, such as in 
thousands of individual subjects or for hundreds of outcomes, as well as when outcome variables are 
hard or expensive to collect. In precision psychiatry for instance, the accurate prediction of a 
psychiatric disease, the disease course, or efficacy of treatment options in individual patients is the 
relevant research goal. 
 

However, it is important to appreciate that the potential immediate gains of the pragmatic goal to 

identify patterns useful to predict clinical endpoints in complex data does not preclude the longer-

term urge for understanding the biological nature underlying psychiatric diseases like schizophrenia. 

Carefully designed, meticulously conducted, and logistically expansive experiments to confirm or 

reject a-priori verbalized research hypotheses in animals and humans will probably remain a 

cornerstone to generate neuroscientific insight into mental illness. As one of many potential 

scenarios for a happy cohabitation of the inference and prediction paradigms, pattern-recognition 

algorithms with successful prediction performance will probably need to undergo carefully controlled 

randomized clinical trials based on traditional null-hypothesis testing before regulatory stakeholders 

authorize translation into clinical practice. 
 
7. Conclusions 
The current diagnosis systems in psychiatry that are pervasively used every day to clinically diagnose 
thousands of patients based on their symptoms and to provide medical care were established largely 
based on expert opinion. Diagnosis groups have served well in clinical practice and scientific 
investigation to impose structure on the evasive conglomerate of mental health disorders. The now 
rapidly increasing amount, detail, and quality of health-related information on each given individual 
is announcing a major turning point in the history of psychiatry. We may increasingly abandon 
predefining disease concepts to then group psychiatry patients based on observed symptoms for 
clinical investigation of brain dysfunction. Instead, it will be increasingly possible to first 
quantitatively derive disease stratifications directly from brain measurements in a data-guided 
fashion to then capitalize on the discovered brain-based phenotypes for patient-tailored monitoring, 
risk assessment, and therapeutic intervention. 
Approaching this future of psychiatric diagnosis systems rooted in brain biology will, in our opinion, 
necessitate awareness of precise notions of prediction and the statistical techniques with the honest 
capacity for deriving rigorous statements on single individuals. The perhaps most important point we 
tried to make in this crash course is this: Medical research has had a long-standing focus on scientific 
discovery revolving around understanding disease mechanisms by statistical methods targeted at 
establishing statistical inference. This statistical goal is in many cases incompatible with the 
pragmatic wish to somewhat blindly exploit the quantifiable consequences of brain pathophysiology 
to achieve most accurate predictions about the future of individuals based on diverse and rich 
biological information. Appreciation of this inference-prediction divergence will probably be a 
necessary milestone in personalized medicine research, which will ultimately benefit the well-being 
of suffering psychiatric patients. 
 
 
 
 
  



Figures 
Figure 1 
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Caption: Brain connectivity can predict treatment response in major depressive disorder. (a) 
Subgroups of patients clustered by resting-state connectivity profile differed in their clinical response 
to repetitive transcranial stimulation (rTMS) intervention on the dorsomedial prefrontal cortex 
(dmPFC). Treatment response rate corresponds to percentage of patients whose symptom severity 
was reduced by at least 25% as measured by the Hamilton rating scale for depression (HAMD). (b) 
Boxplot describing the distribution of symptom severity reduction in four depression biotypes. 
Percent improvement in symptom severity was computed as difference in total HAMD score before 
and after rTMS application. **P = 0.00001–0.002 (Mann–Whitney), marks significant increase 
compared to biotypes 2–4; *P = 0.007 (Mann–Whitney), marks significant increase compared to 
biotype 4. (c) Treatment responders differed in their functional coupling of dmPFC target area with 
other brain regions compared to non-responders: warm colors = increased connectivity, cold colors = 
decreased connectivity (Wilcoxon rank–sum tests, thresholded at P < 0.005). (d) Neuroanatomical 
locations of 25 brain regions (top 10%) which expose most discriminative connectivity features 
allowing detection of treatment responders versus non-responders. Red arrows point at rTMS target. 
(e) Heat maps illustrate how responders to rTMS differed in their functional connectivity profile 
compared to non-responders. (c-e) Brain regions colored by corresponding functional networks. 
Figure reused with permission from Drysdale et al. (2017). 
 



Figure 2 
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Caption: Study rationale for discovering disease-relevant functional connections in aphasia disease. 
Brain activity as measured by the blood oxygen level dependent (BOLD) signal was acquired in 
patients with aphasia and healthy controls during a speech-processing task. In the first step, the 
functional data of each subject were used to estimate the parameters of a dynamic causal model 
(DCM). The ensuing directional connectivity estimates were supposed to capture quantities 
describing functional brain mechanisms. In the second analysis step, a kernel function was built to i a 
similarity metric between the fitted models from two subjects. The constructed kernel instantiated a 
model-based space of variables. In this exemplary subject, the influence of region A on region B and 
the self-connection of region B were particularly strong. In a third step, a machine-learning algorithm 
(support vector machine) was trained to disambiguate patients with aphasia and healthy controls 
exclusively based on connectivity strengths. In the last step, the relevance of functional coupling of 
brain regions A – C for discrimination of disease state could be interpreted mechanistically. In this 
example, the joint influences of region A on region B and C were clinically most relevant to tell apart 
patients and controls that used during model building (cross-validation). Figure reused with 
permission from Brodersen et al. (2011). 
 



Figure 3: 
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Caption: Relationship between accelerated brain aging indexed by brain structure and classification 
of patients with schizophrenia (SCZ) versus healthy controls (HC). Tests evaluated whether the 
difference between actual and brain-derived age predicts disease discriminability, based on machine 
learning (support vector machines) in volumetric MRI data. Upper left: ROC curve of the disease 
classifier (blue line) and the brain age gap prediction (red line) to evaluate their performance in 
telling apart patients and controls not used for predictive model building. Upper right: continuous 
prediction (support vector regression) of patient classification values and brain age gap estimation. 
Both measures were highly correlated (R2 = .53; T = 26.1; P < .001). Lower panel: neuroanatomical 
overlap (yellow) of the brain regions relevant for age prediction (red) and disease state classification 
(green). Pattern-learning algorithms were fed by two structural brain maps: i) gray matter-Regional 
Analysis of brain Volumes in Normalized Space (GM-RAVENS; left) and ii) affinely registered gray 
matter data (right). Shared variation of patient- and age-predictive brain patterns might be an 
explanation for the observed correlation between brain aging and disease classification. Figure 
reused with permission from Koutsouleris et al. (2014). 



Figure 4 
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Caption: Classical null-hypothesis testing and machine-learning algorithms can lead to diverging 
conclusions. The toy data distributions may reflect two groups (e.g. patients with schizophrenia 
versus healthy controls) as assessed by differences in a particular brain measurement (e.g. amygdala 
activity). Group differences are evaluated by i) null-hypothesis testing using two-sample t-tests ("P-
value") and ii) machine-learning using a classification algorithm to predict which group each brain 
data point belongs to as indicated by dotted rule (“Classification”). In three cases with different brain 
data distributions, (A) t-test was statistically significant, while classification accuracy was poor. (B) 
Based on this data scenario, t-test was not statistically significant, while classification accuracy was 
high. (C) In yet another point distribution, both t-test was statistically significant and classification 
accuracy was high. This artificial example illustrates that null-hypothesis testing and machine-
learning algorithms constitute two different statistical cultures that do not necessarily judge data 
distributions by the same aspects of evidence. Hence, group effects as assessed by significant p-
values do not always entail a high prediction performance, and vice versa. Figure reused with 
permission from Arbabshirani et al. (2017). 
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