8,392 research outputs found
Pulsar Kicks Induced by Spin Flavor Oscillations of Neutrinos in Gravitational Fields
The origin of pulsar kicks is reviewed in the framework of the spin-flip
conversion of neutrinos propagating in the gravitational field of a magnetized
protoneutron star. We find that for a mass in rotation with angular velocity
{\bbox \omega}, the spin connections entering in the Dirac equation give rise
to the coupling term {\bbox \omega}\cdot {\bf p}, being the
neutrino momentum. Such a coupling can be responsible of pulsar kicks owing to
the neutrino emission asymmetry generated by the relative orientation of with respect to {\bbox \omega}. For our estimations, the large non
standard neutrino magnetic momentum, , is
considered.Comment: 8 pages, no figures. Changed content and references adde
Electromechanical systems with transient high power response operating from a resonant AC link
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD)
Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b
We calculate the planet-star flux-density ratios as a function of wavelength
from 0.5 microns to 25 microns for the transiting extrasolar giant planets
TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS
secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three
data points and generic calibration issues, detailed conclusions are difficult,
but inferences regarding atmospheric composition, temperature, and global
circulation can be made. Our models reproduce the observations reasonably well,
but not perfectly, and we speculate on the theoretical consequences of
variations around our baseline models. One preliminary conclusion is that we
may be seeing in the data indications that the day side of a close-in
extrasolar giant planet is brighter in the mid-infrared than its night side,
unlike Jupiter and Saturn. This correspondence will be further tested when the
data anticipated in other Spitzer bands are acquired, and we make predictions
for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical
Journa
A Theory for the Radius of the Transiting Giant Planet HD 209458b
Using a full frequency-dependent atmosphere code that can incorporate
irradiation by a central primary star, we calculate self-consistent boundary
conditions for the evolution of the radius of the transiting planet HD 209458b.
Using a well-tested extrasolar giant planet evolutionary code, we then
calculate the behavior of this planet's radius with age. The measured radius is
in fact a transit radius that resides high in HD 209458b's inflated atmosphere.
Using our derived atmospheric and interior structures, we find that irradiation
plus the proper interpretation of the transit radius can yield a theoretical
radius that is within the measured error bars. We conclude that if HD 209458b's
true transit radius is at the lower end of the measured range, an extra source
of core heating power is not necessary to explain the transit observations.Comment: 6 pages in emulateapj format, plus 2 figures (one color), accepted to
the Astrophysical Journa
Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core
We develop a simple model for the evolution of a nucleon spin in a hot and
dense nuclear medium. A given nucleon is limited to one-dimensional motion in a
distribution of external, spin-dependent scattering potentials. We calculate
the nucleon spin autocorrelation function numerically for a variety of
potential densities and distributions which are meant to bracket realistic
conditions in a supernova core. For all plausible configurations the width of
the spin-density structure function is found to be less than the temperature.
This is in contrast with a naive perturbative calculation based on the one-pion
exchange potential which overestimates the width and thus suggests a large
suppression of the neutrino opacities by nucleon spin fluctuations. Our results
suggest that it may be justified to neglect the collisional broadening of the
spin-density structure function for the purpose of estimating the neutrino
opacities in the deep inner core of a supernova. On the other hand, we find no
indication that processes such as axion or neutrino pair emission, which depend
on nucleon spin fluctuations, are substantially suppressed beyond the
multiple-scattering effect already discussed in the literature. Aside from
these practical conclusions, our model reveals a number of interesting and
unexpected insights. For example, the spin-relaxation rate saturates with
increasing potential strength only if bound states are not allowed to form by
including a repulsive core. There is no saturation with increasing density of
scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included,
uses revtex.sty and epsf.sty. Submitted to Physical Review
Recommended from our members
Evolutionarily stable sexual allocation by both stressed and unstressed potentially simultaneous hermaphrodites within the same population.
Factors influencing allocation of resources to male and female offspring continue to be of great interest to evolutionary biologists. A simultaneous hermaphrodite is capable of functioning in both male and female mode at the same time, and such a life-history strategy is adopted by most flowering plants and by many sessile aquatic animals. In this paper, we focus on hermaphrodites that nourish post-zygotic stages, e.g. flowering plants and internally fertilising invertebrates, and consider how their sex allocation should respond to an environmental stress that reduces prospects of survival but does not affect all individuals equally, rather acting only on a subset of the population. Whereas dissemination of pollen and sperm can begin at sexual maturation, release of seeds and larvae is delayed by embryonic development. We find that the evolutionarily stable strategy for allocation between male and female functions will be critically dependent on the effect of stress on the trade-off between the costs of male and female reproduction, (i.e. of sperm and embryos). Thus, we identify evaluation of this factor as an important challenge to empiricists interested in the effects of stress on sex allocation. When only a small fraction of the population is stressed, we predict that stressed individuals will allocate their resources entirely to male function and unstressed individuals will increase their allocation to female function. Conversely, when the fraction of stress-affected individuals is high, stressed individuals should respond to this stressor by increasing investment in sperm and unstressed individuals should invest solely in embryos. A further prediction of the model is that we would not expect to find populations in the natural world where both stressed and unstressed individuals are both hermaphrodite
Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b
Recent observations of the extrasolar planet HD 189733b did not reveal the
presence of water in the emission spectrum of the planet. Yet models of such
'Hot Jupiter' planets predict an abundance of atmospheric water vapour.
Validating and constraining these models is crucial for understanding the
physics and chemistry of planetary atmospheres in extreme environments.
Indications of the presence of water in the atmosphere of HD 189733b have
recently been found in transmission spectra, where the planet's atmosphere
selectively absorbs the light of the parent star, and in broadband photometry.
Here we report on the detection of strong water absorption in a high
signal-to-noise, mid-infrared emission spectrum of the planet itself. We find
both a strong downturn in the flux ratio below 10 microns and discrete spectral
features that are characteristic of strong absorption by water vapour. The
differences between these and previous observations are significant and admit
the possibility that predicted planetary-scale dynamical weather structures
might alter the emission spectrum over time. Models that match the observed
spectrum and the broadband photometry suggest that heat distribution from the
dayside to the night side is weak. Reconciling this with the high night side
temperature will require a better understanding of atmospheric circulation or
possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur
- …