1,123 research outputs found

    Use of sensitivity analysis to predict pilot performance as a function of different displays

    Get PDF
    A technique for objectively evaluating different displays by sensitivity analysis is described. First, the mathematical model used to analyze static displays is developed. The technique is based on formulating functional relationships between the state variables and the variables observable in the display. The matrix of the partial derivatives of the display variables with respect to the state variables, together with the observer's acuity function, is used to calculate expected errors in the state vector estimation. The technique is expanded by the use of Kalman filtering to process a time series of observation vectors. This provides a tool for analyzing displays of dynamic processes by means of a dynamic display evaluation computer program. Results are reported using this program to simulate an Instrument Landing System approach

    Soil O2 controls denitrification rates and N2O yield in a riparian wetland

    Get PDF
    [1] Wetland soil oxygen (O2) is rarely measured, which limits our understanding of a key regulator of nitrogen loss through denitrification. We asked: (1) How does soil [O2] vary in riparian wetlands? (2) How does this [O2] variation affect denitrification rates and end products? and (3) How does [O2] variation and previous exposure to O2affect trace gas fluxes? We collected a continuous seven-month record of [O2] dynamics in a “wet” and “dry” riparian zone. In April 2009, soil [O2] ranged from 0 to 13% and consistently increased with increasing distance from the stream. [O2] gradually declined in all sensors until all sensors went anoxic in early September 2009. In mid-fall, a dropping water table increased soil [O2] to 15–20% within a 2–3 day period. We measured denitrification using the Nitrogen-Free Air Recirculation Method (N-FARM), a direct measurement of N2 production against a helium background. Denitrification rates were significantly higher in the wetter areas, which correlated to lower O2 conditions. Denitrification rates in the drier areas correlated with [O2] in the early spring and summer, but significantly decreased in late summer despite decreasing O2 concentrations. Increasing [O2] significantly increased core N2O production, and therefore may be an important control on nitrous oxide yield. Field N2O fluxes, however, were highly variable, ranging from 0 to 800 ug N m−2 hr−1 with no differences between the wet and dry sites. Future research should focus on understanding the biotic and abiotic controls on O2 dynamics, and O2 dynamics should be included in models of soil N cycling and trace gas fluxes

    Crocodiles and grey nomads: a deadly combination?

    Get PDF
    Increasing numbers of retirees seek individual, extended, unstructured activities in remote, non-commercial locations. Travel is predominantly by self-drive 4WD vehicle towing a caravan/campervan. These ‘grey nomads’ often prefer remote bush camping sites/caravan parks to commercial resorts. The tropics – a popular destination – are inhabited by Australia’s only large semi-terrestrial carnivore, the estuarine crocodile Crocodylus porosus. Conservation programmes of recent decades have resulted in a substantial increase in numbers. With naive grey nomads increasingly encroaching on crocodile territory, attacks are expected to increase. Review of conservation programmes to incorporate awareness education targeting grey nomads is therefore required

    An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 2: Program description

    Get PDF
    A detailed description is presented of the computer programs in order to provide an understanding of the mathematical and geometrical relationships as implemented in the programs. The individual sbbroutines and their underlying mathematical relationships are described, and the required input data and the output provided by the program are explained. The relationship of the adaptive maneuvering logic program with the program to drive the differential maneuvering simulator is discussed

    An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    Get PDF
    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs

    Comparison of pre-emptive and reactive strategies to control an incursion of bluetongue virus serotype 1 to Great Britain by vaccination.

    Get PDF
    Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV), which is spread between its hosts by Culicoides midges. Vaccination is the most effective way to protect susceptible animals against BTV and was used reactively to control the recent northern European outbreak. To assess the consequences of using vaccination pre-emptively we used a stochastic, spatially explicit model to compare reactive and pre-emptive vaccination strategies against an incursion of BTV serotype 1 (BTV-1) into Great Britain. Both pre-emptive and reactive vaccination significantly reduced the number of affected farms and limited host morbidity and mortality. In addition, vaccinating prior to the introduction of disease reduced the probability of an outbreak occurring. Of the strategies simulated, widespread reactive vaccination resulted in the lowest levels of morbidity. The predicted effects of vaccination were found to be sensitive to vaccine efficacy but not to the choice of transmission kernel

    Revisiting competition in a classic model system using formal links between theory and data

    Get PDF
    Formal links between theory and data are a critical goal for ecology. However, while our current understanding of competition provides the foundation for solving many derived ecological problems, this understanding is fractured because competition theory and data are rarely unified. Conclusions from seminal studies in space-limited benthic marine systems, in particular, have been very influential for our general understanding of competition, but rely on traditional empirical methods with limited inferential power and compatibility with theory. Here we explicitly link mathematical theory with experimental field data to provide a more sophisticated understanding of competition in this classic model system. In contrast to predictions from conceptual models, our estimates of competition coefficients show that a dominant space competitor can be equally affected by interspecific competition with a poor competitor (traditionally defined) as it is by intraspecific competition. More generally, the often-invoked competitive hierarchies and intransitivities in this system might be usefully revisited using more sophisticated empirical and analytical approaches

    Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    Get PDF
    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0–3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase

    Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    Get PDF
    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0–3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase

    Soil Oxygen Dynamics: Patterns and Lessons from Six Years of High Frequency Monitoring

    Get PDF
    Soil oxygen (O2) is a fundamental control on terrestrial biogeochemical cycles including processes producing and consuming greenhouse gases (GHG), yet it is rarely measured. Instead, soil O2 is assumed to be proportional to soil moisture and physical soil properties. For example, soil O2 is often inferred from a 25-year old steady-state diffusion model; however, few data exist to test this model in stochastic systems. The variability of soil O2 may be particularly important to GHG emissions from aquatic-terrestrial interface zones because of the convergence of variable hydrology and rapid biogeochemical processing. Our objective is to gain a better understanding of soil O2 variation and its role in controlling GHG emissions across aquatic-terrestrial interface zones. Specifically, we hypothesize that in aquatic-terrestrial interface ecosystems, soil moisture predicts O2 concentration under stable conditions, but under dynamic conditions (e.g., water table fluctuations or precipitation) heterogeneous distributions of water-filled soil pore space complicate this prediction. Furthermore, we hypothesize that GHG emissions will correspond to variation in soil O2. Twenty-four near-continuous (30-minute frequency) soil O2 and moisture sensors were monitored for more than six years. The sensors were installed at 10 cm of depth across an aquatic-terrestrial interface of a constructed wetland in April 2012 and removed in July 2018. Diurnal, precipitation and drainage events, seasonal, and longer-term patterns were in soil O2 observed. Drought conditions (2012) resulted in minimal soil O2 variation; however, a diurnal pattern of lower soil O2 during the day was observed. When precipitation increases within and among sensor soil O2 variation increases. The relationship between soil moisture and soil O2 was non-linear during periods of soil drainage and precipitation. Commonly, a rapid (change of 10% over <24 hours) increase in soil O2 occurred during soil drainage near a common threshold. As soil moisture increased due to precipitation, soil O2 decreased slower than predicted by simple diffusion models. Soil O2 was an important predictor of weekly methane and nitrous oxide emissions correspond to variation in soil O2. These soil O2 data will be useful for understanding multiple soil biogeochemical functions
    corecore