69 research outputs found

    Antiarrhythmic and electrophysiologic effects of flecainide on acutely induced atrial fibrillation in healthy horses

    Get PDF
    BACKGROUND: Only few pharmacologic compounds have been validated for treatment of atrial fibrillation (AF) in horses. Studies investigating the utility and safety of flecainide to treat AF in horses have produced conflicting results, and the antiarrhythmic mechanisms of flecainide are not fully understood. OBJECTIVES: To study the potential of flecainide to terminate acutely induced AF of short duration (≥15 minutes), to examine flecainide‐induced changes in AF duration and AF vulnerability, and to investigate the in vivo effects of flecainide on right atrial effective refractory period, AF cycle length, and ventricular depolarization and repolarization. ANIMALS: Nine Standardbred horses. Eight received flecainide, 3 were used as time‐matched controls, 2 of which also received flecainide. METHODS: Prospective study. The antiarrhythmic and electrophysiologic effects of flecainide were based on 5 parameters: ability to terminate acute pacing‐induced AF (≥15 minutes), and drug‐induced changes in atrial effective refractory period, AF duration, AF vulnerability, and ventricular depolarization and repolarization times. Parameters were assessed at baseline and after flecainide by programmed electrical stimulation methods. RESULTS: Flecainide terminated all acutely induced AF episodes (n = 7); (AF duration, 21 ± 5 minutes) and significantly decreased the AF duration, but neither altered atrial effective refractory period nor AF vulnerability significantly. Ventricular repolarization time was prolonged between 8 and 20 minutes after initiation of flecainide infusion, but no ventricular arrhythmias were detected. CONCLUSIONS AND CLINICAL IMPORTANCE: Flecainide had clear antiarrhythmic properties in terminating acute pacing‐induced AF, but showed no protective properties against immediate reinduction of AF. Flecainide caused temporary prolongation in the ventricular repolarization, which may be a proarrhythmic effect

    The role of desmoglein-2 in kidney disease

    Get PDF
    Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.</p

    The role of desmoglein-2 in kidney disease

    Get PDF
    Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.</p

    Atrial fibrillatory rate as predictor of recurrence of atrial fibrillation in horses treated medically or with electrical cardioversion

    Get PDF
    Background The recurrence rate of atrial fibrillation (AF) in horses after cardioversion to sinus rhythm (SR) is relatively high. Atrial fibrillatory rate (AFR) derived from surface ECG is considered a biomarker for electrical remodelling and could potentially be used for the prediction of successful AF cardioversion and AF recurrence. Objectives Evaluate if AFR was associated with successful treatment and could predict AF recurrence in horses. Study design Retrospective multicentre study. Methods Electrocardiograms (ECG) from horses with persistent AF admitted for cardioversion with either medical treatment (quinidine) or transvenous electrical cardioversion (TVEC) were included. Bipolar surface ECG recordings were analysed by spatiotemporal cancellation of QRST complexes and calculation of AFR from the remaining atrial signal. Kaplan-Meier survival curve and Cox regression analyses were performed to assess the relationship between AFR and the risk of AF recurrence. Results Of the 195 horses included, 74 received quinidine treatment and 121 were treated with TVEC. Ten horses did not cardiovert to SR after quinidine treatment and AFR was higher in these, compared with the horses that successfully cardioverted to SR (median [interquartile range]), (383 [367-422] vs 351 [332-389] fibrillations per minute (fpm), P < .01). Within the first 180 days following AF cardioversion, 12% of the quinidine and 34% of TVEC horses had AF recurrence. For the horses successfully cardioverted with TVEC, AFR above 380 fpm was significantly associated with AF recurrence (hazard ratio = 2.4, 95% confidence interval 1.2-4.8, P = .01). Main limitations The treatment groups were different and not randomly allocated, therefore the two treatments cannot be compared. Medical records and the follow-up strategy varied between the centres. Conclusions High AFR is associated with failure of quinidine cardioversion and AF recurrence after successful TVEC. As a noninvasive marker that can be retrieved from surface ECG, AFR can be clinically useful in predicting the probability of responding to quinidine treatment as well as maintaining SR after electrical cardioversion

    Time‐dependent antiarrhythmic effects of flecainide on induced atrial fibrillation in horses

    Get PDF
    Background, Objective: Pharmacological treatment of atrial fibrillation (AF) in horses can be challenging because of low efficacy and adverse effects. Flecainide has been tested with variable efficacy. To test whether the efficacy of flecainide is dependent on AF duration. Animals and Methods: Nine Standardbred mares. Factorial study design. All horses were instrumented with a pacemaker and assigned to a control or an AF group. On day 0, all horses were in sinus rhythm and received 2 mg/kg flecainide IV. Atrial fibrillation subsequently was induced in the AF group by pacemaker stimulation. On days 3, 9, 27, and 55, flecainide was administered to all horses, regardless of heart rhythm. Results: Conclusions and Clinical ImportanceAll horses in AF cardioverted to sinus rhythm on days 3 and 9. On day 27, 5/6 horses cardioverted, whereas only 2/6 cardioverted on day 55. The time from the start of flecainide infusion to cardioversion (range, 3-185min, log transformed) showed linear correlation with the cumulative duration of AF (r(2)=.80, P<.0001). Flecainide induced abnormal QRS complexes in 4/6 AF horses and 1/3 controls. A positive correlation was found between heart rate before flecainide infusion and number of abnormal QRS complexes (0.14, P<.05). One horse suffered from cardiac arrest and died after flecainide infusion. Flecainide is effective for cardioversion of short-term induced AF, but the effect decreases with AF duration. Controlling heart rate may minimize adverse effects caused by flecainide, but the drug should be used with great caution

    Tunable polymeric micelles for taxane and corticosteroid co-delivery

    Get PDF
    Nanomedicine holds promise for potentiating drug combination therapies. Increasing (pre)clinical evidence is available exemplifying the value of co-formulating and co-delivering different drugs in modular nanocarriers. Taxanes like paclitaxel (PTX) are widely used anticancer agents, and commonly combined with corticosteroids like dexamethasone (DEX), which besides for suppressing inflammation and infusion reactions, are increasingly explored for modulating the tumor microenvironment towards enhanced nano-chemotherapy delivery and efficacy. We here set out to develop a size- and release rate-tunable polymeric micelle platform for co-delivery of taxanes and corticosteroids. We synthesized amphiphilic mPEG-b-p(HPMAm-Bz) block copolymers of various molecular weights and used them to prepare PTX and DEX single- and double-loaded micelles of different sizes. Both drugs could be efficiently co-encapsulated, and systematic comparison between single- and co-loaded formulations demonstrated comparable physicochemical properties, encapsulation efficiencies, and release profiles. Larger micelles showed slower drug release, and DEX release was always faster than PTX. The versatility of the platform was exemplified by co-encapsulating two additional taxane-corticosteroid combinations, demonstrating that drug hydrophobicity and molecular weight are key properties that strongly contribute to drug retention in micelles. Altogether, our work shows that mPEG-b-p(HPMAm-Bz) polymeric micelles serve as a tunable and versatile nanoparticle platform for controlled co-delivery of taxanes and corticosteroids, thereby paving the way for using these micelles as a modular carrier for multidrug nanomedicine. Graphical abstract: [Figure not available: see fulltext.

    Effect of Radical Polymerization Method on Pharmaceutical Properties of Π Electron-Stabilized HPMA-Based Polymeric Micelles

    Get PDF
    Polymeric micelles are among the most extensively used drug delivery systems. Key properties of micelles, such as size, size distribution, drug loading, and drug release kinetics, are crucial for proper therapeutic performance. Whether polymers from more controlled polymerization methods produce micelles with more favorable properties remains elusive. To address this question, we synthesized methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers of three different comparable molecular weights (∼9, 13, and 20 kDa), via both conventional free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were subsequently employed to prepare empty and paclitaxel-loaded micelles. While FR polymers had relatively high dispersities (Đ ∼ 1.5-1.7) compared to their RAFT counterparts (Đ ∼ 1.1-1.3), they formed micelles with similar pharmaceutical properties (e.g., size, size distribution, critical micelle concentration, cytotoxicity, and drug loading and retention). Our findings suggest that pharmaceutical properties of mPEG-b-p(HPMAm-Bz) micelles do not depend on the synthesis route of their constituent polymers

    A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity.

    Get PDF
    Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore