542 research outputs found

    Elastic Stress Ratchetting and Corotational Stress Rates

    Get PDF
    It is well accepted that stresses should return to their original state after a closed elastic strain cycle. Here, we consider originally unstressed elements undergoing such cycles. We presume isotropic materials and use Truesdell’s hypoelastic law. Depending on the applied corotational stress rate, undesirable stress ratchetting is observed in case of two commonly used objective rates, namely the Zaremba-Jaumann and the Green/Naghdi rates. The strain cycle reaches its original stress-free state when the logarithmic rate is applied

    A Closed-form Solution to Finite Bending of a Compressible Elastic-perfectly Plastic Rectangular Block

    Get PDF
    The self-consistent Eulerian rate-type elastoplastic model based on the logarithmic rate is used to study finite bending of a compressible elastic-perfectly plastic rectangular block. It is found that an explicit closed-form solution for this typical inhomogeneous finite deformation , mode may be available in a general case of compressible deformation with a stretch normal to the bending plane, where the maximum circumferential stretch at the outer surface serves as an Independent parameter. Expressions are given for the bending angle, the bending moment, the the outer and the inner radii, and the radii of the two moving elastic-plastic interfaces, etc. The exact stress distribution on any circumferential cross-section of the deformed block is accordingly determined

    Finite Eulerian Elastoplasticity without Strain

    Get PDF
    In the last few decades a number of phenomenological models have been developed fordescribing elastoplastic materials undergoing finite deformations. They are different in structure,e.g., their formulation is related to the reference or to the actual configuration , i.e., it is a Lagrangeanor Eulerian formulation or it may contain elastic and/or plastic deformations. This study hasshown that the most simple and straightforward obtained constitutive relation is free from anynotion of elastic or plastic deformation. Moreover, it is related to the actual configuration, andthus omits to the greatest possible extent, quantities containing unwanted geometric deformationinformations

    Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Get PDF
    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼\sim7.4\% for H−^- at a beam energy of 10\,keV and ∼\sim3.7\% for C−^- at 28\,keV. The diode laser systems used here operate at 975\,nm and 808\,nm, respectively, and provide high continuous power levels of up to 2\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table

    Open questions in the study of population III star formation

    Full text link
    The first stars were key drivers of early cosmic evolution. We review the main physical elements of the current consensus view, positing that the first stars were predominantly very massive. We continue with a discussion of important open questions that confront the standard model. Among them are uncertainties in the atomic and molecular physics of the hydrogen and helium gas, the multiplicity of stars that form in minihalos, and the possible existence of two separate modes of metal-free star formation.Comment: 15 pages, 2 figures. To appear in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxie

    Isotope effect for associative detachment: H(D)−+H(D)→H2(D2)+e

    Get PDF
    We report experimental and theoretical results for associative detachment (AD) of D−+D→D2+e−. We compare these data to our previously published results for H−+H→H2+e−. The measurements show no significant isotope effect in the total cross section. This is to be contrasted with previously published experimental and theoretical work which has found a significant isotope effect in diatomic systems for partial AD cross sections, i.e., as a function of the rotational and vibrational levels of the final molecule formed. Our work implies that though the rovibrational distribution of flux is different for AD of H− + H and D− + D, the total flux for these two systems is essentially the same when summed over all possible final channels

    The Solution Structures of Two Human IgG1 Antibodies Show Conformational Stability and Accommodate Their C1q and FcγR Ligands.

    Get PDF
    The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w (0) of 6.3-6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications
    • …
    corecore