172 research outputs found

    Research framework for an experimental study on phase change materials in scaled models of Dutch dwellings

    Get PDF
    In modern Dutch dwellings, about 10% of the annual use of primary energy is used for cooling, whereas about 50% of the primary energy is used for heating. With the technology of Phase Change Materials (PCMs) energy savings can be made in both areas. PCMs are materials with a high latent heat capacity which are, by melting and solidifying at a certain temperature, capable of storing and releasing a certain amount of energy. Unlike sensible storage materials, PCMs absorb and release heat at a nearly constant temperature. At hot days the PCMs can store (part of) the excessive heat to form a (temporarily) buffer. The heat is released again when the temperature drops below the melting temperature of the PCM. As a result, people inside a building incorporating PCMs can experience more comfort than in conventional buildings. To measure the possible energy savings, an experimental research facility was set up. In this field set-up, modern Dutch dwellings are simulated by using scaled models with and without PCM in the concrete floors. These models are provided with sensors measuring the inside temperature and the incoming solar irradiation. As a reference, a weather station collects data on the outside temperature, humidity, solar irradiation and wind speed. By comparing these data, tihnefl uence of the PCM¿s becomes apparent. In this proposition paper, a research framework to analyse the influence of PCM will be presented. To provide models, software packages will be assessed. The software package, which must be able to calculate the thermodynamic differential equations dynamically, will visualize the incoming and outgoing energy flows. The results, regarding the effectiveness of PCM, will also be implemented in the computation methodology of the Energy Performance Coefficient (EPC)

    Phosphatidylinositol synthesis, its selective salvage, and inter-regulation of anionic phospholipids in Toxoplasma gondii

    Get PDF
    Phosphatidylinositol (PtdIns) serves as an integral component of eukaryotic membranes; however, its biosynthesis in apicomplexan parasites remains poorly understood. Here we show that Toxoplasma gondii—a common intracellular pathogen of humans and animals—can import and co-utilize myo-inositol with the endogenous CDP-diacylglycerol to synthesize PtdIns. Equally, the parasite harbors a functional PtdIns synthase (PIS) containing a catalytically-vital CDP-diacylglycerol phosphotransferase motif in the Golgi apparatus. Auxin-induced depletion of PIS abrogated the lytic cycle of T. gondii in human cells due to defects in cell division, gliding motility, invasion, and egress. Isotope labeling of the PIS mutant in conjunction with lipidomics demonstrated de novo synthesis of specific PtdIns species, while revealing the salvage of other lipid species from the host cell. Not least, the mutant showed decline in phosphatidylthreonine, and elevation of selected phosphatidylserine and phosphatidylglycerol species, indicating a rerouting of CDP-diacylglycerol and homeostatic inter-regulation of anionic phospholipids upon knockdown of PIS. In conclusion, strategic allocation of own and host-derived PtdIns species to gratify its metabolic demand features as a notable adaptive trait of T. gondii. Conceivably, the dependence of T. gondii on de novo lipid synthesis and scavenging can be exploited to develop new anti-infectives.Peer Reviewe

    LION/web:a web-based ontology enrichment tool for lipidomic data analysis

    Get PDF
    Background: A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of results to interpret the involvement of lipids in biological systems. Results: We built a new lipid ontology (LION) that associates &gt; 50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the microsomal fraction showed a significant enrichment of relevant LION-terms including "plasma membrane", "headgroup with negative charge", "glycerophosphoserines", "above average bilayer thickness", and "below average lateral diffusion". A second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and by using LION/web, showing significant enrichment of terms associated with high membrane fluidity ("above average", "very high", and "high lateral diffusion" and "below average transition temperature"). Conclusions: The results demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.</p

    Control of n-Butanol Induced Lipidome Adaptations in E. coli

    Get PDF
    The versatile compound n-butanol is one of the most promising biofuels for use in existing internal combustion engines, contributing to a smooth transition towards a clean energy society. Furthermore, n-butanol is a valuable resource to produce more complex molecules such as bioplastics. Microbial production of n-butanol from waste materials is hampered by the biotoxicity of n-butanol as it interferes with the proper functioning of lipid membranes. In this study we perform a large-scale investigation of the complete lipid-related enzyme machinery and its response to exposure to a sublethal concentration of n-butanol. We profiled, in triplicate, the growth characteristics and phospholipidomes of 116 different genetic constructs of E. coli, both in the presence and absence of 0.5% n-butanol (v/v). This led to the identification of 230 lipid species and subsequently to the reconstruction of the network of metabolites, enzymes and lipid properties driving the homeostasis of the E. coli lipidome. We were able to identify key lipids and biochemical pathways leading to altered n-butanol tolerance. The data led to new conceptual insights into the bacterial lipid metabolism which are discussed

    Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT

    Get PDF
    Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC–MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT−/− HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT−/− HSCs (1080 nm) is significantly smaller than in wild type HSCs (1618 nm). This is a consequence of an altered lipid droplet size distribution with 50.5 ± 9.0% small (≤ 700 nm) lipid droplets in LRAT−/− HSCs and 25.6 ± 1.4% large (1400–2100 nm) lipid droplets in wild type HSC cells. Upon prolonged (24 h) incubation, the amounts of small (≤ 700 nm) lipid droplets strongly increased both in wild type and in LRAT−/− HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed

    The beneficial effect of sulforaphane on platelet responsiveness during caloric load:a single-intake, double-blind, placebo-controlled, crossover trial in healthy participants

    Get PDF
    Background and aims: As our understanding of platelet activation in response to infections and/or inflammatory conditions is growing, it is becoming clearer that safe, yet efficacious, platelet-targeted phytochemicals could improve public health beyond the field of cardiovascular diseases. The phytonutrient sulforaphane shows promise for clinical use due to its effect on inflammatory pathways, favorable pharmacokinetic profile, and high bioavailability. The potential of sulforaphane to improve platelet functionality in impaired metabolic processes has however hardly been studied in humans. This study investigated the effects of broccoli sprout consumption, as a source of sulforaphane, on urinary 11-dehydro-thromboxane B2 (TXB2), a stable thromboxane metabolite used to monitor eicosanoid biosynthesis and response to antithrombotic therapy, in healthy participants exposed to caloric overload. Methods: In this double-blind, placebo-controlled, crossover trial 12 healthy participants were administered 16g of broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to challenge healthy homeostasis. Urine samples were collected during the study visits and analyzed for 11-dehydro-TXB2, sulforaphane and its metabolites. Genotyping was performed using Illumina GSA v3.0 DTCBooster. Results: Administration of broccoli sprouts before the caloric load reduced urinary 11-dehydro-TXB2 levels by 50% (p = 0.018). The amount of sulforaphane excreted in the urine during the study visits correlated negatively with 11-dehydro-TXB2 (rs = −0.377, p = 0.025). Participants carrying the polymorphic variant NAD(P)H dehydrogenase quinone 1 (NQO1*2) showed decreased excretion of sulforaphane (p = 0.035). Conclusion: Sulforaphane was shown to be effective in targeting platelet responsiveness after a single intake. Our results indicate an inverse causal relationship between sulforaphane and 11-dehydro-TXB2, which is unaffected by the concomitant intake of the metabolic challenge. 11-Dehydro-TXB2 shows promise as a non-invasive, sensitive, and suitable biomarker to investigate the effects of phytonutrients on platelet aggregation within hours. Clinical trial registration: [https://clinicaltrials.gov/], identifier [NCT05146804].</p

    LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery

    Get PDF
    Neurotransmitter receptor trafficking during synaptic plasticity requires the concerted action of multiple signaling pathways and the protein transport machinery. However, little is known about the contribution of lipid metabolism during these processes. In this paper, we addressed the question of the role of cholesterol in synaptic changes during long-term potentiation (LTP). We found that N-methyl-d-aspartate-type glutamate receptor (NMDAR) activation during LTP induction leads to a rapid and sustained loss or redistribution of intracellular cholesterol in the neuron. A reduction in cholesterol, in turn, leads to the activation of Cdc42 and the mobilization of GluA1-containing α-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) from Rab11-recycling endosomes into the synaptic membrane, leading to synaptic potentiation. This process is accompanied by an increase of NMDAR function and an enhancement of LTP. These results imply that cholesterol acts as a sensor of NMDAR activation and as a trigger of downstream signaling to engage small GTPase (guanosine triphosphatase) activation and AMPAR synaptic delivery during LTP.Peer Reviewe

    Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis

    Get PDF
    The lack of registered drugs for nonalcoholic fatty liver disease (NAFLD) is partly due to the paucity of human-relevant models for target discovery and compound screening. Here we use human fetal hepatocyte organoids to model the first stage of NAFLD, steatosis, representing three different triggers: free fatty acid loading, interindividual genetic variability (PNPLA3 I148M) and monogenic lipid disorders (APOB and MTTP mutations). Screening of drug candidates revealed compounds effective at resolving steatosis. Mechanistic evaluation of effective drugs uncovered repression of de novo lipogenesis as the convergent molecular pathway. We present FatTracer, a CRISPR screening platform to identify steatosis modulators and putative targets using APOB−/− and MTTP−/− organoids. From a screen targeting 35 genes implicated in lipid metabolism and/or NAFLD risk, FADS2 (fatty acid desaturase 2) emerged as an important determinant of hepatic steatosis. Enhancement of FADS2 expression increases polyunsaturated fatty acid abundancy which, in turn, reduces de novo lipogenesis. These organoid models facilitate study of steatosis etiology and drug targets
    corecore