245 research outputs found
A Reciprocity Theorem for Monomer-Dimer Coverings
The problem of counting monomer-dimer coverings of a lattice is a
longstanding problem in statistical mechanics. It has only been exactly solved
for the special case of dimer coverings in two dimensions. In earlier work,
Stanley proved a reciprocity principle governing the number of dimer
coverings of an by rectangular grid (also known as perfect matchings),
where is fixed and is allowed to vary. As reinterpreted by Propp,
Stanley's result concerns the unique way of extending to so
that the resulting bi-infinite sequence, for , satisfies a
linear recurrence relation with constant coefficients. In particular, Stanley
shows that is always an integer satisfying the relation where unless 2(mod 4) and
is odd, in which case . Furthermore, Propp's method is
applicable to higher-dimensional cases. This paper discusses similar
investigations of the numbers , of monomer-dimer coverings, or
equivalently (not necessarily perfect) matchings of an by rectangular
grid. We show that for each fixed there is a unique way of extending
to so that the resulting bi-infinite sequence, for , satisfies a linear recurrence relation with constant coefficients. We
show that , a priori a rational number, is always an integer, using a
generalization of the combinatorial model offered by Propp. Lastly, we give a
new statement of reciprocity in terms of multivariate generating functions from
which Stanley's result follows.Comment: 13 pages, 12 figures, to appear in the proceedings of the Discrete
Models for Complex Systems (DMCS) 2003 conference. (v2 - some minor changes
Description of stochastic and chaotic series using visibility graphs
Nonlinear time series analysis is an active field of research that studies
the structure of complex signals in order to derive information of the process
that generated those series, for understanding, modeling and forecasting
purposes. In the last years, some methods mapping time series to network
representations have been proposed. The purpose is to investigate on the
properties of the series through graph theoretical tools recently developed in
the core of the celebrated complex network theory. Among some other methods,
the so-called visibility algorithm has received much attention, since it has
been shown that series correlations are captured by the algorithm and
translated in the associated graph, opening the possibility of building
fruitful connections between time series analysis, nonlinear dynamics, and
graph theory. Here we use the horizontal visibility algorithm to characterize
and distinguish between correlated stochastic, uncorrelated and chaotic
processes. We show that in every case the series maps into a graph with
exponential degree distribution P (k) ~ exp(-{\lambda}k), where the value of
{\lambda} characterizes the specific process. The frontier between chaotic and
correlated stochastic processes, {\lambda} = ln(3/2), can be calculated
exactly, and some other analytical developments confirm the results provided by
extensive numerical simulations and (short) experimental time series
Algebraic treatment of the confluent Natanzon potentials
Using the so(2,1) Lie algebra and the Baker, Campbell and Hausdorff formulas,
the Green's function for the class of the confluent Natanzon potentials is
constructed straightforwardly. The bound-state energy spectrum is then
determined. Eventually, the three-dimensional harmonic potential, the
three-dimensional Coulomb potential and the Morse potential may all be
considered as particular cases.Comment: 9 page
Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: the case of the relativistic harmonic oscillator
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions,
i.e., including a linear pseudoscalar potential and quadratic scalar and vector
potentials which have equal or opposite signs. We consider positive and
negative quadratic potentials and discuss in detail their bound-state solutions
for fermions and antifermions. The main features of these bound states are the
same as the ones of the generalized three-dimensional relativistic harmonic
oscillator bound states. The solutions found for zero pseudoscalar potential
are related to the spin and pseudospin symmetry of the Dirac equation in 3+1
dimensions. We show how the charge conjugation and chiral
transformations relate the several spectra obtained and find that for massless
particles the spin and pseudospin symmetry related problems have the same
spectrum, but different spinor solutions. Finally, we establish a relation of
the solutions found with single-particle states of nuclei described by
relativistic mean-field theories with scalar, vector and isoscalar tensor
interactions and discuss the conditions in which one may have both nucleon and
antinucleon bound states.Comment: 33 pages, 10 figures, uses revtex macro
Computing stationary free-surface shapes in microfluidics
A finite-element algorithm for computing free-surface flows driven by
arbitrary body forces is presented. The algorithm is primarily designed for the
microfluidic parameter range where (i) the Reynolds number is small and (ii)
force-driven pressure and flow fields compete with the surface tension for the
shape of a stationary free surface. The free surface shape is represented by
the boundaries of finite elements that move according to the stress applied by
the adjacent fluid. Additionally, the surface tends to minimize its free energy
and by that adapts its curvature to balance the normal stress at the surface.
The numerical approach consists of the iteration of two alternating steps: The
solution of a fluidic problem in a prescribed domain with slip boundary
conditions at the free surface and a consecutive update of the domain driven by
the previously determined pressure and velocity fields. ...Comment: Revised versio
Approximations for many-body Green's functions: insights from the fundamental equations
Several widely used methods for the calculation of band structures and photo
emission spectra, such as the GW approximation, rely on Many-Body Perturbation
Theory. They can be obtained by iterating a set of functional differential
equations relating the one-particle Green's function to its functional
derivative with respect to an external perturbing potential. In the present
work we apply a linear response expansion in order to obtain insights in
various approximations for Green's functions calculations. The expansion leads
to an effective screening, while keeping the effects of the interaction to all
orders. In order to study various aspects of the resulting equations we
discretize them, and retain only one point in space, spin, and time for all
variables. Within this one-point model we obtain an explicit solution for the
Green's function, which allows us to explore the structure of the general
family of solutions, and to determine the specific solution that corresponds to
the physical one. Moreover we analyze the performances of established
approaches like over the whole range of interaction strength, and we
explore alternative approximations. Finally we link certain approximations for
the exact solution to the corresponding manipulations for the differential
equation which produce them. This link is crucial in view of a generalization
of our findings to the real (multidimensional functional) case where only the
differential equation is known.Comment: 17 pages, 7 figure
Non-linearity and related features of Makyoh (magic-mirror) imaging
Non-linearity in Makyoh (magic-mirror) imaging is analyzed using a geometrical optical approach. The sources of non-linearity are identified as (1) a topological mapping of the imaged surface due to surface gradients, (2) the hyperbolic-like dependence of the image intensity on the local curvatures, and (3) the quadratic dependence of the intensity due to local Gaussian surface curvatures. Criteria for an approximate linear imaging are given and the relevance to Makyoh-topography image evaluation is discussed
A Parametrization of Bipartite Systems Based on SU(4) Euler Angles
In this paper we give an explicit parametrization for all two qubit density
matrices. This is important for calculations involving entanglement and many
other types of quantum information processing. To accomplish this we present a
generalized Euler angle parametrization for SU(4) and all possible two qubit
density matrices. The important group-theoretical properties of such a
description are then manifest. We thus obtain the correct Haar (Hurwitz)
measure and volume element for SU(4) which follows from this parametrization.
In addition, we study the role of this parametrization in the Peres-Horodecki
criteria for separability and its corresponding usefulness in calculating
entangled two qubit states as represented through the parametrization.Comment: 23 pages, no figures; changed title and abstract and rewrote certain
areas in line with referee comments. To be published in J. Phys. A: Math. and
Ge
The GRA Beam-Splitter Experiments and Particle-Wave Duality of Light
Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to
demonstrate the particle behaviour of light and a Mach-Zehnder interferometer
experiment to demonstrate the wave behaviour of light. The distinguishing
feature of these experiments is the use of a gating system to produce near
ideal single photon states. With the demonstration of both wave and particle
behaviour (in two mutually exclusive experiments) they claim to have
demonstrated the dual particle-wave behaviour of light and hence to have
confirmed Bohr's principle of complementarity. The demonstration of the wave
behaviour of light is not in dispute. But we want to demonstrate, contrary to
the claims of GRA, that their beam-splitter experiment does not conclusively
confirm the particle behaviour of light, and hence does not confirm
particle-wave duality, nor, more generally, does it confirm complementarity.
Our demonstration consists of providing a detailed model based on the Causal
Interpretation of Quantum Fields (CIEM), which does not involve the particle
concept, of GRA's which-path experiment. We will also give a brief outline of a
CIEM model for the second, interference, GRA experiment.Comment: 24 pages, 4 figure
Bipartite Entanglement in Continuous-Variable Cluster States
We present a study of the entanglement properties of Gaussian cluster states,
proposed as a universal resource for continuous-variable quantum computing. A
central aim is to compare mathematically-idealized cluster states defined using
quadrature eigenstates, which have infinite squeezing and cannot exist in
nature, with Gaussian approximations which are experimentally accessible.
Adopting widely-used definitions, we first review the key concepts, by
analysing a process of teleportation along a continuous-variable quantum wire
in the language of matrix product states. Next we consider the bipartite
entanglement properties of the wire, providing analytic results. We proceed to
grid cluster states, which are universal for the qubit case. To extend our
analysis of the bipartite entanglement, we adopt the entropic-entanglement
width, a specialized entanglement measure introduced recently by Van den Nest M
et al., Phys. Rev. Lett. 97 150504 (2006), adapting their definition to the
continuous-variable context. Finally we add the effects of photonic loss,
extending our arguments to mixed states. Cumulatively our results point to key
differences in the properties of idealized and Gaussian cluster states. Even
modest loss rates are found to strongly limit the amount of entanglement. We
discuss the implications for the potential of continuous-variable analogues of
measurement-based quantum computation.Comment: 22 page
- âŠ