research

A Reciprocity Theorem for Monomer-Dimer Coverings

Abstract

The problem of counting monomer-dimer coverings of a lattice is a longstanding problem in statistical mechanics. It has only been exactly solved for the special case of dimer coverings in two dimensions. In earlier work, Stanley proved a reciprocity principle governing the number N(m,n)N(m,n) of dimer coverings of an mm by nn rectangular grid (also known as perfect matchings), where mm is fixed and nn is allowed to vary. As reinterpreted by Propp, Stanley's result concerns the unique way of extending N(m,n)N(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, N(m,n)N(m,n) for n∈Zn \in {Z}, satisfies a linear recurrence relation with constant coefficients. In particular, Stanley shows that N(m,n)N(m,n) is always an integer satisfying the relation N(m,−2−n)=ϵm,nN(m,n)N(m,-2-n) = \epsilon_{m,n}N(m,n) where ϵm,n=1\epsilon_{m,n} = 1 unless m≡m\equiv 2(mod 4) and nn is odd, in which case ϵm,n=−1\epsilon_{m,n} = -1. Furthermore, Propp's method is applicable to higher-dimensional cases. This paper discusses similar investigations of the numbers M(m,n)M(m,n), of monomer-dimer coverings, or equivalently (not necessarily perfect) matchings of an mm by nn rectangular grid. We show that for each fixed mm there is a unique way of extending M(m,n)M(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, M(m,n)M(m,n) for n∈Zn \in {Z}, satisfies a linear recurrence relation with constant coefficients. We show that M(m,n)M(m,n), a priori a rational number, is always an integer, using a generalization of the combinatorial model offered by Propp. Lastly, we give a new statement of reciprocity in terms of multivariate generating functions from which Stanley's result follows.Comment: 13 pages, 12 figures, to appear in the proceedings of the Discrete Models for Complex Systems (DMCS) 2003 conference. (v2 - some minor changes

    Similar works

    Full text

    thumbnail-image

    Available Versions