55 research outputs found
Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma
Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma
Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma
Abstract Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normalpressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the .06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGFbeta signaling could be effective for multiple forms of glaucoma
Recommended from our members
Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project
BackgroundMYCN gene amplification (MNA) is a hallmark of aggressive neuroblastoma. This study was performed to determine univariate and multivariate predictors of tumor MNA.MethodsData from the International Neuroblastoma Risk Group were analyzed for a subset of 7102 patients with known MYCN status. Chi-square testing and logistic regression were used to identify univariate and multivariate predictors of MYCN status. Recursive partitioning was used to identify groups of patients with maximal differences in rates of MNA.ResultsAll clinical features (age ≥ 18 months, high ferritin levels, high lactate dehydrogenase [LDH] levels, International Neuroblastoma Staging System stage 4, and adrenal sites) and pathological/biological features (DNA index ≤ 1, high mitosis-karyorrhexis index [MKI], undifferentiated/poorly differentiated grade, unfavorable histology according to the International Neuroblastoma Pathology Classification, and segmental chromosomal aberrations [SCAs]) were significantly associated with MNA. LDH (odds ratio [OR], 8.4; P < .001) and chromosomal 1p loss of heterozygosity (OR, 19.8; P < .001) were the clinical and biological variables, respectively, most strongly associated with MNA. In logistic regression, all variables except chromosome 17q aberration and pooled SCAs were independently predictive of MNA. Recursive partitioning identified subgroups with disparate rates of MNA, including subgroups with 85.7% MNA (patients with high LDH levels who had poorly differentiated adrenal tumors with chromosome 1p deletion) and 0.6% MNA (localized tumors having hyperdiploidy and low MKIs and lacking chromosome 1p aberrations).ConclusionsMNA is strongly associated with other clinical and biological variables in neuroblastoma. Recursive partitioning has identified subgroups of neuroblastoma patients with highly disparate rates of MNA. These findings can be used to inform investigations of molecular mechanisms of MNA
Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project
BACKGROUNDMYCN gene amplification (MNA) is a hallmark of aggressive neuroblastoma. This study was performed to determine univariate and multivariate predictors of tumor MNA. METHODSData from the International Neuroblastoma Risk Group were analyzed for a subset of 7102 patients with known MYCN status. Chi-square testing and logistic regression were used to identify univariate and multivariate predictors of MYCN status. Recursive partitioning was used to identify groups of patients with maximal differences in rates of MNA. RESULTSAll clinical features (age18 months, high ferritin levels, high lactate dehydrogenase [LDH] levels, International Neuroblastoma Staging System stage 4, and adrenal sites) and pathological/biological features (DNA index1, high mitosis-karyorrhexis index [MKI], undifferentiated/poorly differentiated grade, unfavorable histology according to the International Neuroblastoma Pathology Classification, and segmental chromosomal aberrations [SCAs]) were significantly associated with MNA. LDH (odds ratio [OR], 8.4; P<.001) and chromosomal 1p loss of heterozygosity (OR, 19.8; P<.001) were the clinical and biological variables, respectively, most strongly associated with MNA. In logistic regression, all variables except chromosome 17q aberration and pooled SCAs were independently predictive of MNA. Recursive partitioning identified subgroups with disparate rates of MNA, including subgroups with 85.7% MNA (patients with high LDH levels who had poorly differentiated adrenal tumors with chromosome 1p deletion) and 0.6% MNA (localized tumors having hyperdiploidy and low MKIs and lacking chromosome 1p aberrations). CONCLUSIONSMNA is strongly associated with other clinical and biological variables in neuroblastoma. Recursive partitioning has identified subgroups of neuroblastoma patients with highly disparate rates of MNA. These findings can be used to inform investigations of molecular mechanisms of MNA. Cancer 2016;122:935-45. (c) 2015 American Cancer Society. MYCN amplification in neuroblastoma is strongly associated with biology/pathology variables and particularly segmental chromosomal aberrations. Recursive partitioning techniques using these variables alone or in conjunction with clinical variables can identify subgroups of patients with markedly disparate rates of MYCN amplification
Recommended from our members
Comprehensive evaluation of context dependence of the prognostic impact of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group (INRG) project.
BACKGROUND:MYCN amplification (MYCN-A) is an established adverse prognostic factor in neuroblastoma. The extent to which the prognostic impact of MYCN-A depends on other factors has not been fully characterized. PATIENTS AND METHODS:Using the International Neuroblastoma Risk Group database, we constructed Cox models of overall survival (OS) to obtain hazard ratios of the effect of MYCN-A within subgroups defined by other prognostic factors. Cox models assessed the degree to which the prognostic impact of MYCN-A was modulated by each other covariate. We used absolute hazard ratio (HR) differences to construct classification trees to identify subgroups with greatest differential prognostic effect of MYCN-A. RESULTS:In a cohort of 6223 patients with known MYCN status, the OS hazard ratio associated with MYCN-A was 6.3 (95% confidence interval 5.7-7.0, P < .001). Age at diagnosis conferred the largest HR absolute difference for MYCN-A between subgroups (HR absolute difference 16.6; HRs for MYCN-A of 19.6 for <18 months, 3.0 for ≥18 months). MYCN-A remained significantly prognostic of OS after controlling for other factors, abrogating their prognostic strength. Patients whose outcome was most impacted by MYCN status were those who were <18 months, had high mitosis karrhyohexis index (MKI) and low ferritin. CONCLUSION:The prognostic strength of MYCN-A varies depending on which patient subgroup defined by other neuroblastoma risk factors is examined, with greatest strength in patients with otherwise favorable features. MYCN-A has little effect within some subgroups, aiding clinical decision-making if MYCN status cannot be assessed. Subgroups where MYCN-A has large effect may be prioritized for agents targeting Myc family proteins
Comprehensive evaluation of context dependence of the prognostic impact of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group (INRG) project
Background MYCN amplification (MYCN-A) is an established adverse prognostic factor in neuroblastoma. The extent to which the prognostic impact of MYCN-A depends on other factors has not been fully characterized. Patients and methods Using the International Neuroblastoma Risk Group database, we constructed Cox models of overall survival (OS) to obtain hazard ratios of the effect of MYCN-A within subgroups defined by other prognostic factors. Cox models assessed the degree to which the prognostic impact of MYCN-A was modulated by each other covariate. We used absolute hazard ratio (HR) differences to construct classification trees to identify subgroups with greatest differential prognostic effect of MYCN-A. Results In a cohort of 6223 patients with known MYCN status, the OS hazard ratio associated with MYCN-A was 6.3 (95% confidence interval 5.7-7.0, P = 18 months). MYCN-A remained significantly prognostic of OS after controlling for other factors, abrogating their prognostic strength. Patients whose outcome was most impacted by MYCN status were those who were <18 months, had high mitosis karrhyohexis index (MKI) and low ferritin. Conclusion The prognostic strength of MYCN-A varies depending on which patient subgroup defined by other neuroblastoma risk factors is examined, with greatest strength in patients with otherwise favorable features. MYCN-A has little effect within some subgroups, aiding clinical decision-making if MYCN status cannot be assessed. Subgroups where MYCN-A has large effect may be prioritized for agents targeting Myc family proteins
- …