31 research outputs found

    Adaptive modulation of antibiotic resistance through intragenomic coevolution

    Get PDF
    Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile genetic elements (MGEs) from other lineages. Newly acquired MGEs are often poorly adapted causing intragenomic conflicts; these are resolved by either compensatory adaptationā€”of the chromosome or the MGEā€”or reciprocal coadaptation. The footprints of such intragenomic coevolution are present in bacterial genomes, suggesting an important role promoting genomic integration of horizontally acquired genes, but direct experimental evidence of the process is limited. Here we show adaptive modulation of tetracycline resistance via intrage- nomic coevolution between Escherichia coli and the multidrug resistant plasmid RK2. Tetracycline treatments, including mono- therapy or combination therapies with ampicillin, favoured de novo chromosomal resistance mutations coupled with mutations on RK2 impairing the plasmid-encoded tetracycline efflux pump. These mutations together provided increased tetracycline resistance at reduced cost. Additionally, the chromosomal resistance mutations conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not observed under ampicillin-only or no antibiotic selection. Intragenomic coevolution can create genomes comprising multiple replicons that together provide high-level, low-cost resistance, but the resulting co-dependence may limit the spread of coadapted MGEs to other lineages

    Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections

    Get PDF
    Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification

    Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species

    Get PDF
    Mobile genetic elements (MGE) such as plasmids and transposons mobilise genes within and between species, playing a crucial role in bacterial evolution via horizontal gene transfer (HGT). Currently we lack data on variation in MGE dynamics across bacterial host species. We tracked the dynamics of a large conjugative plasmid, pQBR103, and its Tn5042 mercury resistance transposon, in five diverse Pseudomonas species in environments with and without mercury selection. Plasmid fitness effects and stability varied extensively between host species and environments, as did the propensity for chromosomal capture of the Tn5042 mercury resistance transposon associated with loss of the plasmid. Whereas P. fluorescens and P. savastanoi stably maintained the plasmid in both environments, the plasmid was highly unstable in P. aeruginosa and P. putida, where plasmid-free genotypes with Tn5042 captured to the chromosome invaded to higher frequency under mercury selection. These data confirm that plasmid stability is dependent upon the specific genetic interaction of the plasmid and host chromosome rather than being a property of plasmids alone, and moreover imply that MGE dynamics in diverse natural communities are likely to be complex and driven by a subset of species capable of stably maintaining plasmids which would then act as hubs of HGT

    Competitive species interactions constrain abiotic adaptation in a bacterial soil community

    Get PDF
    Studies of abiotic adaptation often consider single species in isolation, yet natural communities contain many coexisting species which could limit or promote abiotic adaptation. Here we show, using soil bacterial communities, that evolving in the presence of a competitor constrained abiotic adaptation. Specifically, Pseudomonas fluorescens evolved alone was fitter than P. fluorescens evolved alongside Pseudomonas putida, when P. putida was absent. Genome analyses indicated this was due to mutation of the acetate scavenger actP, which occurred exclusively, and almost universally, in singleā€speciesā€evolved clones. actP disruption was associated with increased growth in soil compared with wildā€type actP, but this benefit was abolished when P. putida was present, suggesting a role for carbon scavenging transporters in species interactions, possibly through nutrient competition. Our results show that competitive species interactions can limit the evolutionary response to abiotic selection, because the fitness benefits of abiotic adaptive mutations were negated in more complex communities

    Why do plasmids manipulate the expression of bacterial phenotypes?

    Get PDF
    Conjugative plasmids play an important role in bacterial evolution by transferring niche-adaptive traits between lineages, thus driving adaptation and genome diversification. It is increasingly clear, however, that in addition to this evolutionary role, plasmids also manipulate the expression of a broad range of bacterial phenotypes. In this review, we argue that the effects that plasmids have on the expression of bacterial phenotypes may often represent plasmid adaptations, rather than mere deleterious side effects. We begin by summarizing findings from untargeted omics analyses, which give a picture of the global effects of plasmid acquisition on host cells. Thereafter, because many plasmids are capable of both vertical and horizontal transmission, we distinguish plasmid-mediated phenotypic effects into two main classes based upon their potential fitness benefit to plasmids: (i) those that promote the competitiveness of the host cell in a given niche and thereby increase plasmid vertical transmission, and (ii) those that promote plasmid conjugation and thereby increase plasmid horizontal transmission. Far from being mere vehicles for gene exchange, we propose that plasmids often act as sophisticated genetic parasites capable of manipulating their bacterial hosts for their own benefit

    The evolution of plasmid stability: Are infectious transmission and compensatory evolution competing evolutionary trajectories?

    Get PDF
    Conjugative plasmids are widespread and play an important role in bacterial evolution by accelerating adaptation through horizontal gene transfer. However, explaining the long-term stability of plasmids remains challenging because segregational loss and the costs of plasmid carriage should drive the loss of plasmids though purifying selection. Theoretical and experimental studies suggest two key evolutionary routes to plasmid stability: First, the evolution of high conjugation rates would allow plasmids to survive through horizontal transmission as infectious agents, and second, compensatory evolution to ameliorate the cost of plasmid carriage can weaken purifying selection against plasmids. How these two evolutionary strategies for plasmid stability interact is unclear. Here, we summarise the literature on the evolution of plasmid stability and then use individual based modelling to investigate the evolutionary interplay between the evolution of plasmid conjugation rate and cost amelioration. We find that, individually, both strategies promote plasmid stability, and that they act together to increase the likelihood of plasmid survival. However, due to the inherent costs of increasing conjugation rate, particularly where conjugation is unlikely to be successful, our model predicts that amelioration is the more likely long-term solution to evolving stable bacteria-plasmid associations. Our model therefore suggests that bacteria-plasmid relationships should evolve towards lower plasmid costs that may forestall the evolution of highly conjugative, 'infectious' plasmids

    Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways

    Get PDF
    The acquisition of plasmids is often accompanied by fitness costs such that compensatory evolution is required to allow plasmid survival, but it is unclear whether compensatory evolution can be extensive or rapid enough to maintain plasmids when they are very costly. The mercury-resistance plasmid pQBR55 drastically reduced the growth of its host, Pseudomonas fluorescens SBW25, immediately after acquisition, causing a small colony phenotype. However, within 48ā€‰h of growth on agar plates we observed restoration of the ancestral large colony morphology, suggesting that compensatory mutations had occurred. Relative fitness of these evolved strains, in lab media and in soil microcosms, varied between replicates, indicating different mutational mechanisms. Using genome sequencing we identified that restoration was associated with chromosomal mutations in either a hypothetical DNA-binding protein PFLU4242, RNA polymerase or the GacA/S two-component system. Targeted deletions in PFLU4242, gacA or gacS recapitulated the ameliorated phenotype upon plasmid acquisition, indicating three distinct mutational pathways to compensation. Our data shows that plasmid compensatory evolution is fast enough to allow survival of a plasmid despite it imposing very high fitness costs upon its host, and indeed may regularly occur during the process of isolating and selecting individual plasmid-containing clones

    Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain

    Get PDF
    Pseudomonas aeruginosa chronic infections of cystic fibrosis (CF) airways are a paradigm for within-host evolution with abundant evidence for rapid evolutionary adaptation and diversification. Recently emerged transmissible strains have spread globally, with the Liverpool Epidemic Strain (LES) the most common strain infecting the UK CF population. Previously we have shown that highly divergent lineages of LES can be found within a single infection, consistent with super-infection among a cross-sectional cohort of patients. However, despite its clinical importance, little is known about the impact of transmission on the genetic structure of these infections over time. To characterize this, we longitudinally sampled a meta-population of 15 genetic lineages within the LES over 13ā€‰months among seven chronically infected CF patients by genome sequencing. Comparative genome analyses of P. aeruginosa populations revealed that the presence of coexisting lineages contributed more to genetic diversity within an infection than diversification in situ. We observed rapid and substantial shifts in the relative abundance of lineages and replacement of dominant lineages, likely to represent super-infection by repeated transmissions. Lineage dynamics within patients led to rapid changes in the frequencies of mutations across suites of linked loci carried by each lineage. Many loci were associated with important infection phenotypes such as antibiotic resistance, mucoidy and quorum sensing, and were repeatedly mutated in different lineages. These findings suggest that transmission leads to rapid shifts in the genetic structure of CF infections, including in clinically important phenotypes such as antimicrobial resistance, and is likely to impede accurate diagnosis and treatment

    Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations

    Get PDF
    Transposable temperate phages randomly insert into bacterial genomes, providing increased supply and altered spectra of mutations available to selection, thus opening alternative evolutionary trajectories. Transposable phages accelerate bacterial adaptation to new environments, but their effect on adaptation to the social environment is unclear. Using experimental evolution of Pseudomonas aeruginosa in iron-limited and iron-rich environments, where the cost of producing cooperative iron-chelating siderophores is high and low, respectively, we show that transposable phages promote divergence into extreme siderophore production phenotypes. Iron-limited populations with transposable phages evolved siderophore overproducing clones alongside siderophore non-producing cheats. Low siderophore production was associated with parallel mutations in pvd genes, encoding pyoverdine biosynthesis, and pqs genes, encoding quinolone signalling, while high siderophore production was associated with parallel mutations in phenazine-associated gene clusters. Notably, some of these parallel mutations were caused by phage insertional inactivation. These data suggest that transposable phages, which are widespread in microbial communities, can mediate the evolutionary divergence of social strategies
    corecore