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6 Abstract

7 Conjugative plasmids are widespread and play an important role in bacterial evolution by accelerating 

8 adaptation through horizontal gene transfer. However, explaining the long-term stability of plasmids remains 

9 challenging because segregational loss and the costs of plasmid carriage should drive the loss of plasmids though 

10 purifying selection. Theoretical and experimental studies suggest two key evolutionary routes to plasmid 

11 stability: First, the evolution of high conjugation rates would allow plasmids to survive through horizontal 

12 transmission as infectious agents, and second, compensatory evolution to ameliorate the cost of plasmid 

13 carriage can weaken purifying selection against plasmids. How these two evolutionary strategies for plasmid 

14 stability interact is unclear. Here, we summarise the literature on the evolution of plasmid stability and then use 

15 individual based modelling to investigate the evolutionary interplay between the evolution of plasmid 

16 conjugation rate and cost amelioration. We find that, individually, both strategies promote plasmid stability, and 

17 that they act together to increase the likelihood of plasmid survival. However, due to the inherent costs of 

18 increasing conjugation rate, particularly where conjugation is unlikely to be successful, our model predicts that 

19 amelioration is the more likely long-term solution to evolving stable bacteria-plasmid associations. Our model 

20 therefore suggests that bacteria-plasmid relationships should evolve towards lower plasmid costs that may 

21 forestall the evolution of highly conjugative, �infectious� plasmids.

22 Main

23 Plasmids, and the vast pool of bacterial accessory genes they carry, are both a substantial source of genetic 

24 material for bacteria, and agents of rapid evolutionary change. Plasmids can carry bacterial accessory genes 

25 encoding diverse traits, such as metabolism of exotic substrates, colonisation of new habitats, or resistance to 

26 environmental toxins (Carattoli 2013, Frost et al 2005). The ability of plasmids to spread these traits to novel 

27 hosts can have important consequences for ecosystem and human health, demonstrated most strikingly in the 

28 spread by plasmids of antimicrobial resistance genes (Sheppard et al 2016). However, plasmid persistence in 

29 bacterial populations can be hard to explain. Not all plasmids carry accessory genes (�cryptic� plasmids (Zaleski 

30 et al 2015)), and even those that do are likely to be beneficial to their hosts only in specific environmental 

31 contexts (Gullberg et al 2014, Hall et al 2015). Moreover, experimental studies have shown that when they are 



32 acquired, plasmids tend to levy a fitness cost on their hosts, meaning that plasmid-free competitors can 

33 outcompete plasmid-containing cells, driving plasmid extinction from the population (Dahlberg and Chao 2003, 

34 De Gelder et al 2007, Hall et al 2016). Yet plasmids remain widespread.

35 Different processes, mechanisms and interactions have been proposed to explain the long-term maintenance of 

36 plasmids. Positive selection for beneficial plasmid-borne accessory genes can maintain plasmids in the short 

37 term (De Gelder et al 2008). However, positive selection alone is unlikely to underlie prolonged plasmid 

38 maintenance because accessory genes are usually able to recombine with and become �captured� by the 

39 chromosome, leaving the costly autonomous plasmid redundant (Hall et al 2016, Harrison and Brockhurst 2012). 

40 Theoretical studies have demonstrated that more complex environments may help to maintain the linkage 

41 between plasmids and the bacterial accessory traits they encode, for example by allowing transfer of locally-

42 adaptive genes to immigrating genotypes (Bergstrom et al 2000), or lowering the relative cost of a public good 

43 trait by spreading that cost infectiously (Rankin et al., 2011). However, positive selection is unable to explain the 

44 abundance of cryptic plasmids that carry no beneficial genes. Likewise, active partitioning mechanisms (par 

45 modules) (Sengupta and Austin 2011) or the acquisition of toxin-antitoxin (TA) �addiction� modules by plasmids 

46 (Loftie-Eaton et al 2016) can stabilise plasmids by reducing the rate at which plasmid free competitors arise. But 

47 these mechanisms alone cannot explain long-term survival because segregational loss is not reduced to zero and 

48 TA systems can be lost or moved onto the chromosome meaning plasmid-free individuals can emerge and 

49 benefit from growth advantage.

50 Given that positive selection is unable to explain the long-term stability of costly plasmids in the face of 

51 appreciable rates of segregational loss, two key processes have emerged that enable plasmid stability: infectious 

52 transmission and compensatory evolution.

53 Plasmids could counter the negative demographic effects of purifying selection and segregation by increasing 

54 their rate of infectious horizontal transmission into plasmid-free hosts, i.e. by becoming infectious agents. While 

55 this route is clearly unavailable to plasmids that do not encode their own conjugative apparatus, i.e. mobilizable 

56 plasmids (those that utilise the conjugation machinery of other elements) and non-mobilizable plasmids, a 

57 considerable proportion of large plasmids do carry their own conjugation apparatus (Smillie et al 2010). Among 
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58 these conjugative plasmids this process is typically tightly regulated by the plasmid itself via a complex gene-

59 regulatory network (Bañuelos-Vazquez et al., 2017). These networks are often conservative, actively repressing 

60 plasmid transfer unless specific environmental, physiological or demographic conditions are met (Koraimann 

61 and Wagner 2014). This self restraint is likely to reflect the high cost of initiating conjugation for the bacterial 

62 host, which requires an investment of time and resources into building the conjugative pilus, and replication and 

63 transfer of DNA, resulting various physiological stresses (Zahrl et al 2006). Moreover, pili production can increase 

64 susceptibility of the host to environmental stressors (Bidlack and Silverman, 2004)as well as predation from lytic 

65 bacteriophages (Jalasvuori et al 2011). Among bacteria-plasmid relationships studied under laboratory 

66 conditions rates of conjugation in bacterial populations are often considered too low to explain plasmid stability 

67 (Bergstrom et al 2000), although various authors have argued that conjugation rates observed in lab media 

68 underestimate rates in natural environments (Lilley and Bailey 1997). However, experimental evolution has 

69 revealed that selection for horizontal transmission can lead to the evolution of increased conjugation rate in 

70 plasmids (De Gelder et al 2008, Kottara et al 2016, Turner et al 1998) and several studies have found plasmids 

71 with conjugation rates sufficient to allow them to invade and persist as infectious elements (Bahl et al 2007, Fox 

72 et al 2008, Hall et al 2016).

73 A number of long-term experimental evolution studies have now demonstrated that plasmid stability can be 

74 facilitated by compensatory evolution to ameliorate the cost of plasmid carriage thereby weakening purifying 

75 selection against the plasmid backbone (Dionisio et al 2005, Harrison et al 2015a, Heuer et al 2007, Porse et al 

76 2016, San Millan et al 2015, Sota et al 2010, Zhong et al 2012). Moreover, signatures of plasmid amelioration 

77 can be detected by comparative genomics (McNally et al 2016). The experimental studies reveal that 

78 compensatory mutations ameliorating the plasmid cost can occur both on the plasmid (Dionisio et al 2005, Porse 

79 et al 2016, Sota et al 2010) or on the host chromosome (Harrison et al 2015a, San Millan et al 2015). Several 

80 known mechanisms of compensatory evolution involve mutations to regulatory genes which are likely to undo 

81 the gene regulatory disruption caused by plasmid acquisition, which is emerging as a common basis for the costs 

82 of newly acquired plasmids (Harrison et al 2015a, San Millan et al 2015). In some cases, single compensatory 

83 mutations in regulatory genes have been shown to completely ameliorate the cost of plasmid carriage (Harrison 

84 et al 2015a). In other cases, compensatory mutations have been shown to target conjugation leading to reduced 
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85 rates either indirectly, presumably as a result of large-scale regulatory changes (Harrison et al 2015a), or directly 

86 via mutations affecting genes involved in the conjugation process (Heuer et al 2007).

87 Thus increased rates of infectious transmission via higher rates of conjugation and amelioration to reduce the 

88 cost of plasmid carriage have both been shown to promote plasmid stability. However, there has been little 

89 consideration of how these two processes interact. As mentioned above, compensatory mutations can directly 

90 lead to reduced rates or complete loss of conjugation, likely due to the fact that conjugation itself is an inherently 

91 costly process. Experimental evolution studies provide contradictory evidence for how amelioration and 

92 infectious transmission interact. Several studies have reported evidence for a trade-off between increased 

93 plasmid conjugation rate and bacterial host fitness, suggesting that the physiological costs of conjugation scale 

94 with the rate of conjugation (Dahlberg and Chao 2003, Heuer et al 2007, Turner et al 1998). However, another 

95 study observed no such trade-off: plasmids that evolved higher conjugation rates also evolved to become less 

96 costly (Kottara et al 2016), suggesting that infectious transmission and amelioration need not always be mutually 

97 exclusive mechanisms for plasmid stability. There is a clear need for evolutionary theory to understand how 

98 these two key mechanisms of plasmid stability interact.

99 To expand on our verbal model and further explore the relationship between amelioration and infectious 

100 transmission in plasmid stability we developed an individual-based model of plasmid evolution (Harrison et al 

101 2015b, Harrison et al 2016). Individual based models are a powerful tool to explore the dynamics of evolving 

102 systems, as they are stochastic and thus can be used to investigate the impact of evolutionary events, like rare 

103 mutations, on ecological processes, like plasmid dynamics. They are therefore useful for unpicking the potential 

104 and relative importance of different evolutionary processes and trajectories. We used our model to explore 

105 systems in which conjugation rate could evolve, amelioration could evolve, or both processes could evolve. We 

106 ran the simulation with varying rates and degrees of amelioration, and also explored the differences in plasmid 

107 maintenance between models in which amelioration mutations occurred on the plasmid compared with 

108 chromosomal mutations.

109 The model



110 Here we elaborate on a model parameterised to reflect the characteristics of a costly conjugative plasmid 

111 (Harrison et al 2015b, Harrison et al 2016).  A full description of the model and parameter values can be found 

112 in the supplementary material. In brief, populations are modelled in continuous time (Allen and Dytham, 2009) 

113 with individuals randomly chosen and subjected to one of three possible events, chosen at random; cell division, 

114 conjugation, cell death. Whether or not the event occurs is dependant on a given probability (supplementary 

115 materials). If it does, the changes are recorded, but regardless of whether the event occurs or not, time is 

116 advanced, with time increments scaled by population size. We divide time here in to generations, which as it is 

117 continuous is somewhat arbitrarily, but amounts to roughly 3n events, at which point analytics are recorded. To 

118 simulate environmental disruption every 8 generations the population experiences a 1% bottleneck, where 99% 

119 of the population, drawn at random, dies.

120 Compensatory evolution 

121 The mechanisms which underlie compensatory evolution are only starting to be understood but empirical 

122 evidence suggests that amelioration of plasmid cost is often accomplished through highly repeatable, large 

123 effect mutations (Harrison et al., 2015; Porse et al., 2016; San Millan et al., 2015) that can be very specific to 

124 different bacteria - plasmid combinations (San Millan et al., 2015). As we have previously shown both the 

125 strength and availability of these mutations can have important consequences for the fate of the conjugative 

126 plasmids (Harrison et al., 2016). Following our previous model the cost of plasmid carriage can be ameliorated 

127 in a single mutational step whereby either 100%, 95% or 50% of the cost of the plasmid is ameliorated. 

128 Compensatory mutations occur at the same (10-7) or elevated (10-6 and 10-5) mutation rate relative to the rest 

129 of the genome. 

130 Further to this we allow mutations to occur on either the plasmid, i.e. remain linked to the plasmid following 

131 horizontal gene transfer, or on the bacterial genome, where naive hosts will be subject to the full cost of plasmid 

132 carriage.

133 Conjugation
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134 Conjugation events are dependant on two probabilities; firstly the probability that a cell is in contact with 

135 another cell in the environment, which scales with the population size/density. If contact occurs - and the focal 

136 individual carries a plasmid - conjugation will be initiated with a given probability, here referred to as the 

137 conjugation rate, which is encoded by the plasmid. Plasmid encoded conjugation rates are free to evolve with 

138 mutational effects drawn at random. In order to capture the tradeoff between vertical and horizontal 

139 transmission, the next time that individual is selected for a cell division event the probability of cell division 

140 occurring is reduced to zero. Superinfection is not permitted meaning that attempted conjugation with a plasmid 

141 containing cell results in a growth rate cost but no transfer of the plasmid. 

142 Analysis

143 Parameter effects on plasmid survival - i.e. the time to plasmid extinction with censoring to account for replicates 

144 where plasmids were maintained - was estimated where possible using the Cox proportional hazard method 

145 using the �coxph� function in the �survival� R package. As statistical analysis of data obtained through simulations 

146 is problematic, in particular due to inflated risk of type I error  (White et al., 2014) effect size (exp(coeff)) but not 

147 p values are reported.

148 Results

149 Under the conditions of the model plasmids are lost from bacterial populations when conjugation rates or 

150 amelioration is allowed to evolve (Fig 1A). Both the evolution of increased conjugation rate and the emergence 

151 of amelioration could result in plasmid maintenance. Plasmid survival in each case was stochastic, with plasmids 

152 either persisting, often at high frequency, or being lost from the population entirely depending on the mutations 

153 arising before the plasmid went extinct; a situation akin to evolutionary rescue.

154 For models in which conjugation, but not amelioration, could evolve, plasmids survived in 10/60 replicates (Fig. 

155 1A) and rose to high frequency. However, this result was highly dependent on mutations that increase plasmid 

156 conjugation rate arising before the plasmid became extinct. This outcome results in purely parasitic infectious 

157 plasmids that offset their cost of carriage by evolving a high rate of (re-)infection. Furthermore, plasmids 

158 maintained by high conjugation rates encounter an additional constraint due to the tradeoff between horizontal 

https://paperpile.com/c/aXxoxi/5u8A


159 and vertical transmission. This cost is captured in our model, as conjugation is associated with a reduction in 

160 growth. The benefits of horizontal vs vertical transmission will be exacerbated under conditions where 

161 horizontal transmission is inefficient, i.e. where conjugation does not result in plasmid infection, which may also 

162 be the case where the plasmid is at high frequency but also where potential recipients contain a different 

163 plasmid from the same incompatibility group or cellular immune systems such as CRISPR/cas loci. The result of 

164 this is that investment in conjugation will be frequency-dependent, leading to large oscillations in conjugation 

165 rate before reaching an equilibrium at an intermediate rate (Fig. 2B and C).

166 For models in which amelioration, but not conjugation, could evolve, plasmid maintenance was strongly 

167 dependant on the strength of amelioration mutations (% cost ameliorated: exp(coeff) = 0.751, SE(coeff) = 0.020), 

168 as well as on the mutation rate (log[amelioration mutation rate]: exp(coeff) = 0.689, SE(coeff) = 0.043) (Fig.1B). 

169 This is consistent with the stochastic nature of individual-based models: if survival depends on the mutation 

170 appearing before the plasmid was driven extinct, increased rates of mutation can have a large effect on the 

171 outcome. Variable survival was seen in models where amelioration occurred less frequently, provided the 

172 strength of amelioration was sufficient to tip the balance between loss though purifying selection and gain 

173 through conjugation, allowing plasmids to reinvade. The models suggested that plasmid-borne amelioration is 

174 more effective than host amelioration (amelioration location: exp(coeff) = 0.441, SE(coeff) = 0.155). This is 

175 because for plasmid amelioration, the plasmid and the amelioration mutation are linked, allowing them to 

176 spread together by both vertical and horizontal transmission, whereas for host amelioration reduced-cost 

177 plasmids are only transmitted vertically (i.e. to daughter cells). However, although few cases of amelioration 

178 have been conclusively identified in experimental studies, those that have been published suggest that host 

179 amelioration occur perhaps more readily than plasmid-borne amelioration (Harrison et al 2015a, San Millan et 

180 al 2015) but see (Porse et al 2016, Sota et al 2010). This may be due to the fact that there are potentially more 

181 chromosomal targets for amelioration � chromosomes are bigger than plasmids (often an order of magnitude 

182 or more), thus increasing the effective supply of ameliorative mutations. In addition, plasmid-borne 

183 ameliorations may be host specific, and therefore this advantage may be limited  in situations where plasmids 

184 are transferred between host genotypes or species (Sota et al 2010).



185 For models in which both conjugation rate and amelioration were allowed to evolve, the mechanisms interacted 

186 synergistically to enhance plasmid maintenance (Fig. 1C. effect of conjugation evolution on amelioration models: 

187 exp(coeff) = 0.574, SE(coeff) = 0.112). This is because the evolution of either mechanism increases the likelihood 

188 of the other becoming established. Where amelioration evolved first plasmids could be maintained, giving time 

189 for high conjugation rates to evolve and spread plasmids throughout the population (Fig. 3A & B). 

190 Correspondingly, the early appearance of high conjugation rates increases plasmid prevalence and allows 

191 compensatory mutations to reach fixation (Fig. 3C & D), whereas alone they are only able to invade the plasmid 

192 containing portion of the population. In the long-term however, amelioration is predicted to be a more 

193 successful strategy than high conjugation rate. While high conjugation rates can drive plasmid invasion, once 

194 the population has ameliorated plasmid cost the need for high rates of conjugation are reduced. Under the 

195 conditions of our model, where plasmids are at high frequency and conjugation is inefficient there is a benefit 

196 to investing less in horizontal transmission and plasmid conjugation rates decrease (Fig 3B & D). Interestingly, 

197 some plasmid-borne accessory genes confer benefits which scale negatively with plasmid frequency in the 

198 population (Ellis et al 2007), indicating additional costs to conjugative plasmids in populations where they are at 

199 high frequency.

200 Our results suggest that established bacteria-plasmid relationships should thus ultimately trend towards low 

201 conjugation rate, because high conjugation rate is only transiently beneficial. For many, possibly all, natural 

202 plasmids, conjugation is tightly controlled through a plasmid encoded gene-regulatory network which represses 

203 plasmid transfer gene expression unless specific environmental, physiological or demographic conditions are 

204 met (Koraimann and Wagner 2014). This self restraint is likely to reflect the high cost of conjugation initiation, 

205 limiting conjugation to conditions where plasmid transfer is more likely to be successful, e.g. where bacterial 

206 population density is high (McAnulla et al., 2007), or beneficial e.g. when hosts are under physiological stress 

207 (Beaber et al., 2003). Whilst here we assume that conjugation is subject to regulation based on bacterial density, 

208 the mechanism underlying conjugation regulation may well have an impact on the predictions of the model. This 

209 is particularly true for mechanisms that restrict conjugation under conditions where plasmid-free recipients are 

210 likely to be rare. This may be achieved indirectly, through transient derepression systems, where the infectivity 

211 of newly acquired plasmids is initially high but repression builds up over time. At the population level this will 

212 allow conjugation rates to be high where new hosts are abundant and naturally decline as the plasmids become 
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213 saturated in the population (Fernandez-Lopez et al 2014). In addition more direct mechanisms have been 

214 identified which use either plasmid (Singh et al., 2013) or host encoded pheromones (Dunny and Johnson, 2011) 

215 to detect the frequency of plasmid free recipients and therefore repress conjugation as plasmids approach 

216 saturation. Such mechanisms circumvent the frequency-dependant benefits that are inherent in plasmid 

217 conjugation and lead to selection against highly infectious plasmids in our model.

218 In contrast to increased conjugation rate, amelioration was universally favoured and does not suffer a penalty 

219 at high plasmid frequency. Thus whilst high conjugation rates can facilitate the invasion of plasmids into new 

220 bacterial hosts, where compensatory mutations are available these mutations will inevitably spread, reducing 

221 purifying selection which drives plasmid loss and thus selection for high conjugation rates. Over evolutionary 

222 timescales therefore, evolution to ameliorate plasmid costs is likely the primary mechanism enabling plasmid 

223 persistence. Moreover, our simulations suggest that plasmid amelioration is a more effective evolutionary 

224 solution than is host amelioration, although this is likely to vary with ecological conditions. For example, the 

225 relative benefits of plasmid versus host amelioration may depend on the balance of vertical versus horizontal 

226 transmission, with host amelioration likely to be more favoured with diminishing opportunities for horizontal 

227 transmission.
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232  

233 Figure 1. Overview of plasmid prevalence across the model parameter space. Circles denote the outcome of 

234 replicate simulations for each set of model parameters. Each is composed of 20 sectors, showing the plasmid 

235 prevalence (height, where the circle center = 0 and outline = 1) mean conjugation rate (shading) for a single 

236 replicate simulation after 1000 generations. A. Models where no compensatory evolution is permitted. For these 

237 treatments 60 replicate simulations were run (split across 3 circles, showing 20 replicates per circle). B. Models 
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238 where amelioration but not conjugation was allowed to evolve. The effect size (x axis) and mutation rate (y axis) 

239 of available amelioration mutations was varied, as well as the position on either the plasmid or chromosome. C. 

240 Models where both conjugation rares and amelioration was allowed to evolve. Axes as for B.

241 Figure 2. Rescue of plasmids through conjugation rate evolution. Population dynamics of a single iteration of the 

242 model where conjugation rate evolution occurs in time to prevent plasmid loss in the absence of amelioration 

243 mutations. Panels on the left show A. plasmid prevalence (shading) and B. corresponding plasmid conjugation 

244 (shading: mean conjugation rate; line: number of conjugation events per plasmid) through time. Panel C. 

245 Oscillations in conjugation rate are driven by plasmid-frequency dependant selection stabilised over time (shown 

246 as line shading from 0 (light) to 1000 (dark) generations). 

247 Figure 3. Examples of the synergistic effect of combined conjugation and amelioration evolution in stabilising 

248 plasmid prevalence. Panels A and C show plasmid prevalence (light shading) and the frequency of ameliorated 

249 plasmid genotypes (dark shading) and panels B and D show corresponding plasmid conjugation (shading: mean 

250 conjugation rate; line: number of conjugation events per plasmid) through time. In iteration 1 conjugation rate 

251 evolves first allowing the plasmid to invade to high frequency. As a consequence ameliorated plasmid bearers 

252 are able to invade into the plasmid containing portion of the population. In iteration 2 amelioration mutations 

253 stabilise plasmid prevalence at low frequencies, allowing time for conjugation rate mutations to appear before 

254 the plasmid is lost. Both iterations are examples of dynamics from models where conjugation evolves, 

255 amelioration occurs on the chromosome, efficiency = 100% and mutation rate = 5e107.
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Supplementary information

 

Individual Based Model methodology

We developed an individual-based model using single bacterial cells as unique agents. 

Simulations are all initiated with 2,000,000 cells, initially 100% plasmid bearing, and are run 

for 1000 time steps. Populations are allowed to grow to a carrying capacity (K) of 5,000,000 

with the probability of cell division scaled with population density, declining to 0 at K. We 

vary parameters for amelioration (the mutation rate, strength of amelioration mutations and 

their linkage to/location on either the plasmid or chromosome) and follow the fate of 

plasmids in the population with conjugation rate is either fixed or allowed to evolve (see table 

for parameter ranges). This gives 38 different conditions, and we have 20 replicates of each 

condition – with the exception of the no amelioration conditions (conjugation with and without 

conjugation evolution for which 60 replicates were run.

The model follows the rejection method of Allen and Dytham (2009) where events occur in 

series. Cells are selected at random and subject to one of three possible events in the model 

chosen at random: cell division; cell death; conjugation. We calculate the probability of that 

event occurring and either execute the event and update status or do nothing. Time then 

advances, whether the event is executed or not, by an amount drawn from an exponential 

distribution with mean 1/3n where n is the current population size (i.e. the number of events 

per unit time (here termed a ‘generation’) is proportional to the population size and a cell 

surviving an entire time step will experience an average of 1 event of each type during that 

time step).

When a generation is completed various statistics are collected and recorded. No status is 

changed at the end of the generation however to capture the stochasticity introduced 

through population disruption and bottlenecking (inherent in transfer experiments as well as 

naturally disturbed populations) every 8 generations the population is subject to 99% 

mortality.

Events

Cell division is density dependent with probability declining to zero at the carrying capacity. 

Any costs, such as the cost of carrying a plasmid, are applied as a reduction in the 

probability of cell division. Daughter cells are identical to the parent cell, except for 1) in 

plasmid bearers, the possibility of losing the plasmid through segregation, 2) the possibility 

of mutating the conjugation rate and, 3) for cells that have not ameliorated the cost of 

https://paperpile.com/c/zYbbXS/UhHz


bearing a plasmid, the possibility of mutating to allow amelioration of the cost of plasmid 

carriage.

Cell death is not density dependent and remains at a fixed rate throughout.

Conjugation is the only event type that requires direct interaction between cells.  A 

conjugation event is initiated when the focal cell is plasmid bearing. First, we assume a well-

mixed population and the focal cell encounters another random cell with probability 2n/K 

(where n is current population size and K is the carrying capacity). If an encounter occurs 

conjugation is initiated by the donor with a probability set by the donor cell’s conjugation rate. 

If the encountered cell is plasmid free conjugation is successful and the encountered cell 

gains a plasmid. If it is plasmid-containing no transfer occurs. Donor cells pay a cost for the 

initiation of a conjugation attempt, regardless of outcome, by missing its next cell division 

opportunity.

Parameters

This model extends the simulation model described previously (Harrison et al., 2016, 

2015b). Parameter estimates are drawn from experimental data based on the Pseudomonas 

plasmid pQBR103 (Harrison et al., 2015a) where possible as well as the literature. 

 

Parameter Applied as Value

Population   

Starting population  2,000,000

Carrying capacity (K)  5,000,000

Mortality at bottleneck death rate  0.99

Bottleneck frequency  8 generations

Cell division event   

Birth rate Cell division probability Variable (n/K)
where n is the current population 
size

Cost of plasmid carriage Reduction in cell division probability 0.21

Segregation rate Probability of generating a plasmid-
plasmid free daughter cell if 
plasmid containing

0.00012

Mutation rate amelioration Probability of daughter cells 
acquiring amelioration mutation

Variable (5*10-5, 5*10-6, 5*10-7) 1

https://paperpile.com/c/zYbbXS/sZ9k+CXI5
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Strength of amelioration 
mutations

Ameliorated cost of maintaining a 
plasmid

Variable (0, 0.01, 0.1) 1

Mutation rate conjugation Probability of plasmid in daughter 
cell acquiring conjugation mutation

1*10-6 

Strength of conjugation 
mutations

Change to probability of 
conjugation 

Variable (Drawn from a random 
distribution with mean 0 and SD 0.2)
NB. conjugation is capped at 0 and 1

   

Cell death event   

Death rate Probability of cell death 0.1

   

Conjugation event   

Encounter rate Probability of encountering another 
cell for possible conjugation

2 * n/K
where n is the current population 
size
Capped at 1

Starting conjugation rate Probability of initiating conjugation if 
encounter occurs (prior to 
conjugation evolution)

0.025 1

1 Parameterised based on experimental data from Pseudomonas plasmid pQBR103 

(Harrison et al., 2015a)
2 Estimate based on segregation rate of Pseudomonas plasmid pWWO (Duetz and Van 

Andel, 1991)
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