140 research outputs found
COSIMA-Rosetta calibration for in-situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds
20 pages, 3 figures, 5 tablesInternational audienceCOSIMA (COmetary Secondary Ion Mass Analyser) is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust grains. It has a mass resolution m/{\Delta}m of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary grains
Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta
Cometary ices are rich in CO2, CO and organic volatile
compounds, but the carbon content of cometary dust was only measured for
the Oort Cloud comet 1P/Halley, during its flyby in 1986. The COmetary
Secondary Ion Mass Analyzer (COSIMA)/Rosetta mass spectrometer
analysed dust particles with sizes ranging from 50 to 1000Â ÎŒm, collected
over 2 yr, from 67P/Churyumov-Gerasimenko (67P), a Jupiter family
comet. Here, we report 67P dust composition focusing on the elements C
and O. It has a high carbon content (atomic | |â )
close to the solar value and comparable to the 1P/Halley data. From
COSIMA measurements, we conclude that 67P particles are made of nearly
50 per cent organic matter in mass, mixed with mineral phases that are
mostly anhydrous. The whole composition, rich in carbon and non-hydrated
minerals, points to a primitive matter that likely preserved its
initial characteristics since the comet accretion in the outer regions
of the protoplanetary disc.</p
Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/ChuryumovâGerasimenko
The COmetary Secondary Ion Mass Analyzer (COSIMA) on board the Rosetta mission has analysed numerous cometary dust particles collected at very low velocities (a few m sâ1)
in the environment of comet 67P/ChuryumovâGerasimenko (hereafter 67P).
In these particles, carbon and nitrogen are expected mainly to be part
of the organic matter. We have measured the nitrogen-to-carbon (N/C)
atomic ratio of 27 cometary particles. It ranges from 0.018 to 0.06 with
an averaged value of 0.035 ± 0.011. This is compatible with the
measurements of the particles of comet 1P/Halley and is in the lower
range of the values measured in comet 81P/Wild 2 particles brought back
to Earth by the Stardust mission. Moreover, the averaged value
found in 67P particles is also similar to the one found in the insoluble
organic matter extracted from CM, CI and CR carbonaceous chondrites and
to the bulk values measured in most interplanetary dust particles and
micrometeorites. The close agreement of the N/C atomic ratio in all
these objects indicates that their organic matters share some
similarities and could have a similar chemical origin. Furthermore,
compared to the abundances of all the detected elements in the particles
of 67P and to the elemental solar abundances, the nitrogen is depleted
in the particles and the nucleus of 67P as was previously inferred also
for comet 1P/Halley. This nitrogen depletion could constrain the
formation scenarios of cometary nuclei.</p
Halogens as tracers of protosolar nebula material in comet 67P/ChuryumovâGerasimenko
We report the first in situ detection of halogens in a cometary coma, that of 67P/ChuryumovGerasimenko. Neutral gas mass spectra collected by the European Space Agencyâs Rosetta spacecraft during four periods of interest from the first comet encounter up to perihelion indicate that the main halogen-bearing compounds are HF, HCl and HBr. The bulk elemental abundances relative to oxygen are ~8.9 Ă 10â»â” for F/O, ~1.2 Ă 10â»âŽ for Cl/O and ~2.5 Ă 10â»â¶ for Br/O, for the volatile fraction of the comet. The cometary isotopic ratios for Âłâ·Cl/Âłâ”Cl and âžÂčBr/â·âčBr match the Solar system values within the error margins. The observations point to an origin of the hydrogen halides in molecular cloud chemistry, with frozen hydrogen halides on dust grains, and a subsequent incorporation into comets as the cloud condensed and the Solar system formed
Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko
Comets have been considered to be representative of icy planetesimals that may have contributed a significant
fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water
to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its
relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement
of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta
spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the
mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the
coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that
comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earthâs major volatiles
Current progress in positive and negative ion modes of a laser ionization mass spectrometer equipped with CosmOrbitrap development - Applicability to in situ analysis of ocean worlds
Since the beginning of the space era, mass spectrometry is a reliable technique for in situ characterisation of ions and molecules detected in various planetary environments. It has been crucial for the analysis of compounds found in ocean worlds vicinity, such as Enceladusâ plumes. The study of the chemical complexity of the environments of the ocean worlds would benefit from the design of a new generation of instruments to allow an exhaustive characterization of them. Among the many objectives of space missions is the search for potential chemical biosignatures on ocean worlds. The precise and unequivocal identification of these biosignatures would be done by mass spectrometers able to perform analyses with a high mass resolving power and high mass accuracy. Efforts are on-going to develop for future space explorations High Resolution Mass Spectrometer instruments (Arevalo et al., 2020) with a space qualified version of the Orbitrap mass analyser, the CosmOrbitrap. Coupled with a commercial laser ionization source, it has demonstrated promising performances in positive ion mode in terms of mass resolution, mass accuracy and isotopic ratio measurements. This work focuses on the performance achievements with the negative ion mode recently implemented. A study has been performed with a ruggedized spaceflight CosmOrbitrap mass analyser at technical readiness level of 5âŻat the dual ion polarity to determine the efficiency of the instrument to detect and identify organic molecules of prebiotic interest when embedded in magnesium and sodium salts matrix. These results illustrate the potential of the CosmOrbitrap mass analyser for future in situ analysis of ocean worlds as Europa and Enceladus
OLYMPIA-LILBID: A new Approach for Calibrating Spaceborne Hypervelocity Ice Grain Detectors Using High-Resolution Mass Spectrometry
International audienc
- âŠ