714 research outputs found

    Necrotizing Infection of the Aortic Arch: Reconstruction Utilizing Unusual Extra-anatomic Bypass Grafts to Reroute Cerebral Blood Flow.

    Get PDF
    Destructive infections of the aortic arch and great vessels are challenging to manage. We describe a novel technique for debranching the right cerebral and upper extremity arteries via composite extra-anatomic bypasses from the femoral artery, with subsequent homograft in-line reconstruction of the arch, in a patient with Staphylococcus sepsis and necrosis of the arch and great vessels

    Pancreatic tumor pathogenesis reflects the causative genetic lesion.

    Full text link

    Heat lability of NADPH at physiologic p H

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44179/1/10528_2004_Article_BF00484822.pd

    A Novel Bacterium Associated with Lymphadenitis in a Patient with Chronic Granulomatous Disease

    Get PDF
    Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system causing defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections. We identified a novel gram-negative rod in excised lymph nodes from a patient with CGD. Gram-negative rods grew on charcoal-yeast extract, but conventional tests could not identify it. The best 50 matches of the 16S rRNA (using BLAST) were all members of the family Acetobacteraceae, with the closest match being Gluconobacter sacchari. Patient serum showed specific band recognition in whole lysate immunoblot. We used mouse models of CGD to determine whether this organism was a genuine CGD pathogen. Intraperitoneal injection of gp91(phox) (−/−) (X-linked) and p47 (phox −/−) (autosomal recessive) mice with this bacterium led to larger burdens of organism recovered from knockout compared with wild-type mice. Knockout mouse lymph nodes had histopathology that was similar to that seen in our patient. We recovered organisms with 16S rRNA sequence identical to the patient's original isolate from the infected mice. We identified a novel gram-negative rod from a patient with CGD. To confirm its pathogenicity, we demonstrated specific immune reaction by high titer antibody, showed that it was able to cause similar disease when introduced into CGD, but not wild-type mice, and we recovered the same organism from pathologic lesions in these mice. Therefore, we have fulfilled Koch's postulates for a new pathogen. This is the first reported case of invasive human disease caused by any of the Acetobacteraceae. Polyphasic taxonomic analysis shows this organism to be a new genus and species for which we propose the name Granulobacter bethesdensis

    A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model

    Get PDF
    Background: Germ cell transplantation results in fertile recipients and is the only available approach to functionally investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O. niloticus), in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan. Methodology/Principal Findings: Using two different tilapia strains, the production of fertile spermatozoa with donor characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes. These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor spermatogenesis and offspring compared to previously described methods. Conclusion: Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserv
    corecore