8 research outputs found

    Reduced Time for Urinary Alkalinization Before High-Dose Methotrexate with Preadmission Oral Bicarbonate

    Get PDF
    Purpose: Hydration and urinary alkalinization are essential for reducing renal dysfunction with high dose methotrexate (HDMTX). This report presents an analysis of institutional methods used to achieve adequate urinary alkalinization and output for patients receiving single agent HDMTX. Renal and metabolic parameters of tolerance were examined. Methods: Medical records of adult patients receiving HDMTX during the calendar years of 2008–2009 were retrospectively reviewed to determine the time to achieve urine pH\u3e7. Number of hospital days, bicarbonate dose, ordered hydration rate, urine output, and urine pH were assessed. A survival analysis model was run for time to urine pH\u3e7 using preadmission oral bicarbonate as a predictor variable and including a frailty term. Observational statistics were performed for other parameters. Results: The analysis included 79 encounters for ten patients. Urine pH\u3e7 was achieved more rapidly in patients receiving preadmission oral bicarbonate (P¼0.012). The number of patients receiving HDMTX on the same day as admission was greater for those receiving preadmission oral bicarbonate (47%) in comparison to those who did not (2%), and they spent less time in the hospital. A standard regimen for hydration and urinary alkalinization based on this project is reported. The nature and frequency of adverse events were as expected for this treatment. Conclusion: At our institution, the time to achieve urinary alkalinization was reduced for patients receiving preadmission oral bicarbonate which facilitated chemotherapy infusion on the same day as admission and decreased the number of calendar days that patients stayed in the hospital

    Safety, Outcomes, and T-Cell Characteristics in Patients with Relapsed or Refractory MDS or CMML Treated with Atezolizumab in Combination with Guadecitabine

    No full text
    Purpose: We hypothesized that resistance to hypomethylating agents(HMA)amongpatients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) would be overcome by combining a programmed death-ligand 1 antibody with an HMA. Patients and Methods: We conducted a Phase I/II, multicenter clinical trial for patients with MDS not achieving an International Working Group response after at least 4 cycles of an HMA ("refractory") or progressing after a response ("relapsed") with 3+ or higher risk MDS by the revised International Prognostic Scoring System (IPSS-R) and CMML-1 or -2. Phase I consisted of a 3+3 dose-escalation design beginningwith guadecitabine at 30 mg/m2 and escalating to 60 mg/m2 Days 1 to 5 with fixed-dose atezolizumab: 840 mg intravenously Days 8 and 22 of a 28-day cycle. Primary endpoints were safety and tolerability; secondary endpoints were overall response rate (ORR) and survival. Results: Thirty-three patients, median age 73 (range 54-85), were treated. Thirty patients had MDS and 3 had CMML, with 30% relapsed and 70% refractory. No dose-limiting toxicities were observed in Phase I. There were 3 (9%) deaths in ≤ 30 days. Five patients (16%) came off study for drug-related toxicity. Immune-related adverse events (IRAE) occurred in 12 (36%) patients (4 grade 3, 3 grade 2, and 5 grade1). ORR was 33%[95% confidence interval (CI), 19%-52%] with 2 complete remission (CR), 3 hematologic improvement, 5 marrow CR, and 1 partial remission. Median overall survival was 15.1 (95% CI, 8.5-25.3) months. Conclusions: Guadecitabine with atezolizumab has modest efficacy with manageable IRAEs and typical cytopenia-related safety concerns for patients with relapsed or refractory MDS and CMML.</p

    Electrode Materials (Bulk Materials and Modification)

    No full text
    corecore