593 research outputs found

    Investigation of IBMQ quantum device hardware calibration with Markovian master equation.

    Get PDF
    Masters Degree. University of KwaZulu-Natal. Durban.In the design of quantum technology, it is crucial to account for the quantum system interacting with its environment to understand the influence of thermal processes and design the devices to avoid e↔ects of relaxation and decoherence of quantum states deteriorating the system beyond use. To accomplish this, a broadening of ideal isolated quantum mechanics is required, namely the theory of open quantum systems. This is most prevalent in the research of quantum error correction, which ensures that the initial quantum state remains intact when it is received and doesn’t decay into a di↔erent state which would change the information carried by the qubit. To investigate the intersection of all these phenomena, open-access cloud-computing services o↔er the ideal experimental environment. One such test-bed is o↔ered by IBM in their Quantum Experience platform which allows for remote access to quantum devices. The IBMQ quantum processors, which make use of superconducting qubit technology, are openly accessible through a cloud service. As such, they have been the focus of a lot of research into the evolution of quantum states while interacting with the environment. In the study of open quantum systems, an assumption is often made that the system and environment share no memory of the interaction of individual quantum states, which simplifies the analysis of the system’s evolution while also being e↔ectively true for large enough systems. Systems that obey this assumption are known as Markovian. New research has devised methods of error correction and tomography of quantum processors when this assumption no longer holds. Additionally, the calibration of the IBMQ processors performed by IBM to provide hardware parameters is performed through a set of techniques that are not guaranteed to yield cohesive results. These primary factors, among others, give rise to the research discussed in this dissertation, and pose the question of how accurate the hardware calibrations are when compared to results obtained through experiments performed on the devices. Furthermore, the approach uses the theory of open quantum systems to assess the hardware calibration while also testing whether the Markovian assumption of a memoryless system holds for the IBMQ quantum devices. This gives insight into the current state of superconducting quantum computers while providing a possible new avenue for quantum error correction from the perspective of the theory of open quantum systems.Publications listed on page iv

    SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Get PDF
    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar DRO lab built from the launch system elements enables an early and representative transit habitat test bed necessary for closing gaps before sending humans on a 1000 day Mars mission

    SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Get PDF
    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative, and multi-disciplinary development. A lunar DRO lab built from SLS elements enables an early and representative transit habitat test bed necessary for closing gaps before sending humans on a 1,000-day Mars mission

    Bounded seas

    Get PDF
    Abstract Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust parsing, error recovery, lexical analysis, and rapid development of parsers for data extraction. An island grammar precisely defines only a subset of a language syntax (islands), while the rest of the syntax (water) is defined imprecisely. Usually water is defined as the negation of islands. Albeit simple, such a definition of water is naive and impedes composition of islands. When developing an island grammar, sooner or later a language engineer has to create water tailored to each individual island. Such an approach is fragile, because water can change with any change of a grammar. It is time-consuming, because water is defined manually by an engineer and not automatically. Finally, an island surrounded by water cannot be reused because water has to be defined for every grammar individually. In this paper we propose a new technique of island parsing —- bounded seas. Bounded seas are composable, robust, reusable and easy to use because island-specific water is created automatically. Our work focuses on applications of island parsing to data extraction from source code. We have integrated bounded seas into a parser combinator framework as a demonstration of their composability and reusability

    Note and Comment

    Get PDF
    Concealing a Secret Trust by Making an Absolute Testamentary Gift to Testator\u27s Solicitor; Conflict of State and Federal Regulations of Interstate Commerce Before the Latter Becomes Operative; Adverse Possession by an Alien and the Effect of Statute Removing an Alien\u27s Disability to Inherit; The Rescission of a Pre-Corporate Contract on the Ground of Promoter\u27s Fraud; When is an Agreement Not to be Performed Within a Yea

    Amplitude equations for a system with thermohaline convection

    Full text link
    The multiple scale expansion method is used to derive amplitude equations for a system with thermohaline convection in the neighborhood of Hopf and Taylor bifurcation points and at the double zero point of the dispersion relation. A complex Ginzburg-Landau equation, a Newell-Whitehead-type equation, and an equation of the ϕ4\phi^4 type, respectively, were obtained. Analytic expressions for the coefficients of these equations and their various asymptotic forms are presented. In the case of Hopf bifurcation for low and high frequencies, the amplitude equation reduces to a perturbed nonlinear Schr\"odinger equation. In the high-frequency limit, structures of the type of "dark" solitons are characteristic of the examined physical system.Comment: 21 pages, 8 figure

    A scalable system to measure contrail formation on a per-flight basis

    Full text link
    Persistent contrails make up a large fraction of aviation's contribution to global warming. We describe a scalable, automated detection and matching (ADM) system to determine from satellite data whether a flight has made a persistent contrail. The ADM system compares flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a 'flight matching' algorithm and use it to label each flight segment as a 'match' or 'non-match'. We perform this analysis on 1.6 million flight segments. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We assess the agreement between our labels and available prediction models based on weather forecasts. Shifting air traffic to avoid regions of contrail formation has been proposed as a possible mitigation with the potential for very low cost/ton-CO2e. Our findings suggest that imperfections in these prediction models increase this cost/ton by about an order of magnitude. Contrail avoidance is a cost-effective climate change mitigation even with this factor taken into account, but our results quantify the need for more accurate contrail prediction methods and establish a benchmark for future development.Comment: 25 pages, 6 figure

    Discovery of a young massive stellar cluster near HESS J1813-178

    Full text link
    We present the serendipitous discovery of a young stellar cluster in the Galactic disk at l=12deg. Using Keck/NIRSPEC, we obtained high- and low-resolution spectroscopy of several stars in the cluster, and we identified one red supergiant and two blue supergiants. The radial velocity of the red supergiant provides a kinematic cluster distance of 4.7pm0.4 kpc, implying luminosities of the stars consistent with their spectral types. Together with the known Wolf-Rayet star located 2.4' from the cluster center, the presence of the red supergiant and the blue supergiants suggests a cluster age of 6-8 Myr, and an initial mass of 2000 Msun. Several stars in the cluster are coincident with X-ray sources, including the blue supergiants and the Wolf-Rayet star. This is indicative of a high binary fraction, and is reminiscent of the massive young cluster Westerlund 1. The cluster is coincident with two supernova remnants, SNR G12.72-0.0 and G12.82-0.02, and the highly magnetized pulsar associated with the TeV gamma-ray source HESS J1813-178. The mixture of spectral types suggests that the progenitors of these objects had initial masses of 20 - 30 Msun.Comment: 4 pages, 3 figures. ApJ Letter, accepted. Figure 2 has been revise
    • 

    corecore