
Bounded Seas

Jan Kurš∗, Mircea Lungu, Rathesan Iyadurai, Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http: // scg. unibe. ch

Abstract

Imprecise manipulation of source code (semi-parsing) is useful for tasks such

as robust parsing, error recovery, lexical analysis, and rapid development of

parsers for data extraction. An island grammar precisely defines only a subset

of a language syntax (islands), while the rest of the syntax (water) is defined

imprecisely.

Usually water is defined as the negation of islands. Albeit simple, such a

definition of water is näıve and impedes composition of islands. When develop-

ing an island grammar, sooner or later a language engineer has to create water

tailored to each individual island. Such an approach is fragile, because water

can change with any change of a grammar. It is time-consuming, because wa-

ter is defined manually by an engineer and not automatically. Finally, an island

surrounded by water cannot be reused because water has to be defined for every

grammar individually.

In this paper we propose a new technique of island parsing — bounded

seas. Bounded seas are composable, robust, reusable and easy to use because

island-specific water is created automatically. Our work focuses on applications

of island parsing to data extraction from source code. We have integrated

bounded seas into a parser combinator framework as a demonstration of their

composability and reusability.

Keywords: semi-parsing, island parsing, parsing expression grammars

∗Corresponding author
Email address: kurs@iam.unibe.ch (Jan Kurš)

Preprint submitted to Elsevier February 14, 2020

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
8
2
2
8
4

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
1
2
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/44740176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scg.unibe.ch

1. Introduction

Island grammars [1] offer a way to parse input without complete knowledge

of the target grammar. They are especially useful for extracting selected in-

formation from source files, reverse engineering and similar applications. The

approach assumes that only a subset of the language syntax is known or of inter-

est (the islands), while the rest of the syntax is undefined (the water). During

parsing, any unrecognized input (water) is skipped until an island is found.

A common misconception is that water should consume everything until

some island is detected. Rules for such water are easy to define, but they cause

composability problems. Consider a parser where local variables are defined

as islands within a method body. Now suppose a method declaring no local

variables is followed by one that does. In this case the water might consume the

end of the first method as well as the start of the second method until a variable

declaration is found. The method variables from the second method will then

be improperly assigned to the first one.

In practice, language engineers define many small islands to guide the parsing

process. However it is difficult to define such islands in a robust way so that

they function correctly in multiple contexts. As a consequence they are neither

reusable nor composable.

To prevent our variable declaring island from skipping to another method,

we have to make its water stop at most at the end of a method. In general,

we have to analyze and update each particular island’s water, depending on its

context. Yet island-specific water is fragile, hard to define and it is not reusable.

It is fragile, because it requires re-evaluation by a language engineer after any

change in a grammar. It is hard to define, because it requires the engineer’s time

for detailed analysis of a grammar. It is not reusable, because island-specific

water depends on rules following the island, thus it is tailored to the context in

which the island is used — it is not general.

In this paper we propose a new technique for island parsing: bounded seas [?

2

]. Bounded seas are composable, reusable, robust and easy to use. The key idea

of bounded seas is that specialized water is defined for each particular island

(depending on the context of the island) so that an island can be embedded into

any rule. To achieve such composability, water is not allowed to consume any

input that would be consumed by a following rule.

To prevent fragility and to improve reusability, we compute water automat-

ically, without user interaction. To prove feasibility, we integrate bounded seas

into Petit Parser [2], a PEG–based [3] (see Appendix A) parser combinator [4]

framework.

In addition to our previous work [?] we evaluate the usability of bounded

seas in two case studies, we present a performance study, and we provide more

details about the implementation. The contributions of the paper are:

• the definition of bounded seas, a composable, reusable, robust and easy

method of island parsing;

• a formalization of bounded seas for PEGs;

• an implementation of bounded seas in a PEG-based parser combinator

framework; and

• case studies of semi-parsing of Java and Ruby using bounded seas.

Structure. Section 2 motivates this work by presenting the limitations of island

grammars with an example. Section 3 presents our solution to overcoming these

limitations by introducing bounded seas. Section 4 introduces a sea operator for

PEGs, which creates a bounded sea from an arbitrary PEG expression. Section 5

presents our implementation of bounded seas in PetitParser. Section 6 discusses

the applicability of bounded seas to GLL parsers, design decisions and some

limitations of bounded seas. Section 7 analyzes how well bounded seas perform

compare to other island parsers. Section 8 analyzes usability of bounded seas

for context-sensitive grammars, particularly for indentation-sensitive grammars.

Section 9 surveys other semi-parsing techniques and highlights similarities and

3

differences between them and bounded seas. Finally, section 10 concludes this

paper with a summary of the contributions.

2. Motivating Example

Let us consider the source code in Listing 1 written in some proprietary

object-oriented language. We don’t have a grammar specification for the code,

because the parser was written using ad hoc techniques, and we do not have

access to its implementation. Let us suppose that our task is to extract class

and method names. Classes may be contained within other classes and we need

to keep track of which class each method belongs to.

class Shape

Color color;

method getColor {

return color;

}

int uid = UIDGenerator.newUID;

endclass

Listing 1: Source code of the Shape class in a proprietary language.

2.1. Why not use Regular Expressions?

To extract a flat list of method names, we could use regular expressions.

We need, however, to keep track of the nesting of classes and methods within

classes. Regular expressions are only capable of keeping track of finite state, so

are formally too weak to analyze our input. To deal with nested structures, we

need at least a context-free parser.

Modern implementations of regular expression frameworks can parse more

than regular languages (e.g., using recursive patterns1). Such powerful frame-

works can handle our rather simple task. However regular expressions are not

meant to specify complex grammars since they tend to be hard to maintain

when the complexity of the grammar grows.

1http://perldoc.perl.org/perlre.html

4

http://perldoc.perl.org/perlre.html

start ← class

class ← ’class ’ id classBody ’endclass ’

classBody ← methodWater

methodWater ← (!’method ’ .)* method (!’endclass ’.)*

method ← ’method ’ id block

block ← ’{’ (!’}’ .)* ’}’

id ← letter (letter / number)*

letter ← ’a’ / ’b’ / ’c’ / ...

number ← ’1’ / ’2’ / ’3’ / ...

Listing 2: Our first island grammar.

2.2. A Näıve Island Grammar

To write a parser, we need a grammar. Because the grammar can easily

consist of a hundred rules (e.g., ≈ 80 for Python, ≈ 180 for Java) and since we

are only interested in specific parts of the grammar, we define an island grammar

as a PEG (see Appendix A) with fewer than ten rules as in Listing 2. We initially

assume that each class body contains just one method.2 Since we are interested

in extracting method names, we define the method rule as an island inside

of the methodWater rule which surrounds it with water. The methodWater

rule is defined imprecisely: water skips everything until the string "method "

is found.

We also define the block rule, which consumes an open curly brace and

then skips everything until the closing curly brace is found.

The methodWater rule in the grammar in Listing 2 uses a näıve definition

of water. It will work as long as we do not complicate the grammar.

2We use an almost standard PEG formalism for grammar definitions (see Appendix A).

A terminal is quoted ’terminal’ , a non-terminal is not quoted nonterminal , a sequence

is a concatenation of expressions, prioritized choice is marked as / , repetition as * , a

not-predicate as ! , and . stands for any character.

5

2.2.1. Composability Problems.

Suppose that in order to allow multiple classes in a single file we modify

the start rule to allow repetition (start ← class*). Parsing the input in

Listing 3 should fail because Shape does not contain a method. The result,

however, no matter whether we use PEG or CFG, is only one class — Shape

(instead of Shape and Circle) — with a method getDiameter , which is

wrong. We see that our water is too greedy here, trying to find a method at

any cost and ignoring the ’endclass’ and the Circle definition.

class Shape

int uid = UIDGenerator.newUID;

endclass

class Circle

int diameter;

method getDiameter {

return diameter;

}

endclass

Listing 3: Source code of Shape and Circle classes.

Things do not get better when we allow multiple repetitions of methodWater

within classBody (classBody ← methodWater*). The parser will stay

confused, and, depending on the technology (CFG, PEG), the result will be

either ambiguous (CFG) or incorrect (PEG).

The language engineer has to use either a) disambiguation rules and filters

[5, 6] to filter out unwanted results of CFGs; or b) predicates to prevent the

incorrect decisions of CFGs and PEGs. Since predicates are applicable for both

technologies (CFGs and PEGs), we focus on this approach.

2.3. An Advanced Island Grammar

To make the methodWater rule composable we must make it possible for it

to be embedded into optional (?) or repetition (+ , *) rules. We consequently

define the grammar as in Listing 4. This new definition can properly parse

multiple classes in a file with an arbitrary number of methods in a class. We

6

achieve composability by forbidding the water to go beyond the ’endclass’

keyword and by forbidding the water to consume any method definition.

start ← class*

class ← ’class ’ id classBody ’endclass ’

classBody ← (methodWater)*

methodWater ← (!’method ’ !’endclass ’.)*

method

(!’method ’ !’endclass ’.)*

method ← ’method ’ id block

block ← ’{’

(

(!’}’ !’{’ .)*

block

(!’}’ !’{’ .)*

)*

’}’

id ← letter (letter / number)*

letter ← ’a’ / ’b’ / ’c’ ...

number ← ’1’ / ’2’ / ’3’ ...

Listing 4: Complete and final island grammar.

One can see that the syntactic predicates in the methodWater are more

complicated. They have been inferred from the rest of the grammar by analyzing

which tokens can appear after the method island. In case we decide to allow

for nested classes, i.e., if we extend the rule classBody to:

classBody ← (methodWater / classWater)*

we have to revise the predicates of methodWater to add !’class’ , and we

have to find the proper predicates for the classWater rule.

2.3.1. Ease of Use, Robustness, and Reusability Problems.

The limitations of defining methodWater and classWater by hand illus-

trate the general problems of semi-parsing [7, 8] with island grammars:

1. Water rules are hard to define correctly because they require the entire

grammar to be analysed.

7

class ← ’class ’ id classBody ’endclass ’

classBody ← methodSea*

methodSea ← ∼method∼
method ← ’method ’ id block

block ← ’{’ ∼(block / ε)∼* ’}’

id ← letter (letter / number)*

letter ← ’a’ / ’b’ / ’c’ ...

number ← ’1’ / ’2’ / ’3’ ...

Listing 5: Island Grammar from Listing 4 rewritten with the sea operator.

2. The definition of water is fragile because predicates need to be re-evaluated

after any change in a grammar.

3. Finally, the water rules are tailored just for a specific grammar and cannot

be reused in another grammar with different rules.

3. Bounded Seas

3.1. The Sea Operator in a Nutshell

We have shown that water must be tailored both to the island within the

water and to the surroundings of the water (e.g., methodWater in Listing 4). In

this paper, we define a bounded sea to be an island surrounded by context-aware

water.

To automate the definition of bounded seas we introduce a new operator for

building tolerant grammars: the sea operator. We use the notation ∼island∼

to create sea from island , which can be a terminal or non-terminal. Instead

of having to produce complex definitions of sea, a language engineer can use the

sea operator which will do the hard work. Listing 5 shows how the grammar of

Listing 4 can be defined using the sea operator.

A rule defined with the sea operator (e.g., ∼method∼) maintains the com-

posability property of the advanced grammar since by applying the sea operator

8

we search for the island in a restricted scope. Moreover, such a rule is reusable,

robust, and simple to define.

Bounded seas are based on two ideas:

1. Water never consumes any input from the right context of the bounded

sea, i.e., any input that can appear after the bounded sea. This is very

different from the water of “traditional” island grammars, where water is

not guaranteed to not consume a part of a valid input (cf. Section 2.2.1).

The water of bounded seas is unambiguous, thus improving composability.

2. Everything is fully automated. The sea is created using the sea operator

∼island∼ . Once the sea is placed in the grammar, the grammar is ana-

lyzed and appropriate water is created without user interaction. This way

the sea can be placed in any grammar. In case the grammar is changed,

the water is recomputed automatically. Automatic water computation

eases grammar definition, and ensures robustness and reusability of rules.

Bounded seas can be integrated into a parser combinator framework, a highly

modular framework for building a parser from other composable parsers [9]. The

fact that a bounded sea can be implemented as a parser combinator demon-

strates its composability and flexibility.

3.2. The Sea Boundary

Ideally water should never consume any input that can appear after a bounded

sea, i.e., it should never consume an input from its right context. We will call

the right context the boundary of a sea.

The right context of the sea consists of the inputs accepted by parsing ex-

pressions that appear after the island. In the case of A ← ∼’a’∼ (B / C) ,

the right context of ∼’a’∼ is any input accepted either by B or by C .

Being aware of the boundary, a tolerant parser can search for methods in

a class without the risk that other classes will interfere. Bounded seas would

correctly parse the input in Listing 3 because water of a method sea would not

be allowed to consume endclass , which is a boundary of the methodSea .

9

The island-specific water has to stop in two cases: first, when an island is

reached; second, when a boundary is reached. If a boundary is reached before

an island is found, the sea fails. The fact that sea can fail implies that sea can

be embedded into optional or repetition expressions without ambiguous results.

For example, we can define the superclass specification as an optional island:

∼classDef∼ ∼superclassSpec∼? classBody ’endclass ’

If superclassSpec is not present for the particular class, it will simply fail

upon reaching classBody instead of searching for superclassSpec further

and further. The same holds for repetitions.

classBody ← ∼method∼*

This rule will consume only methods until it reaches "endclass " in the in-

put string, since endclass is in the boundary of ∼method∼ , so methods in

another class cannot be inadvertently consumed.

We first define bounded seas generally, and subsequently provide a PEG-

specific definition.

Definition 1 (Bounded Sea). A bounded sea consists of a sequence of three

parsing phases:

1. Before-Water: Consume input until an island or the right context ap-

pears. Fail the whole sea if we hit the right context. Continue if we hit an

island.

2. Island: Consume an island.

3. After-Water: Consume input until the right context is reached.

3.3. The Context Sensitivity of Bounded Seas

In order to preserve the unambiguity of water in bounded seas, they need to

be context-sensitive. A bounded sea recognizes different substrings of an input

depending on what surrounds the sea. There are two cases where context-

sensitivity emerges:

10

1. A bounded sea recognizes different input depending on what immediately

follows the sea.

2. A bounded sea recognizes different input depending on what immediately

precedes the sea.

Let us demonstrate context sensitivity of bounded seas using rules from

Listing 6 and two inputs, "..a..b.. " and "..a..c.. " . On its own, A

recognizes any input with ’a’ and B recognizes any input with ’b’ (see

rows 1-4 in Table 1), because they are not bounded by anything.

A ← ∼’a’∼
B ← ∼’b’∼

R1 ← A R2 ← B

R3 ← A ’b’ R4 ← A ’c’

R5 ← A B

Listing 6: Rules for demonstrating context-sensitive behavior.

Rule Input Result

1 R1 ← A "..a..b.. " A recognizes ’..a..b..’

2 R1 ← A "..a..c.. " A recognizes ’..a..c..’

3 R2 ← B "..a..b.. " B recognizes ’..a..b..’

4 R2 ← B "..a..c.. " B fails

5 R3 ← A ’b’ "..a..b.. " A recognizes ’..a..’ ’b’ recognizes ’b’

6 R3 ← A ’b’ "..a..c.. " A recognizes ’..a..b..’ ’b’ fails

7 R4 ← A ’c’ "..a..b.. " A recognizes ’..a..b..’ ’c’ fails

8 R4 ← A ’c’ "..a..c.. " A recognizes ’..a..’ ’c’ recognizes ’c’

9 R5 ← A B "..a..b.. " A recognizes ’..a..’ B recognizes ’b..’

10 R5 ← A B "..a..c.. " A recognizes ’..a..c..’ B fails

Table 1: The seas A and B recognize different inputs depending on the context.

However, when the two islands are not alone, their boundary can differ,

depending on the context. The right context of A is ’b’ in R3 , and the right

11

context of A is ’c’ in R4 . Therefore A consumes different substrings of

input depending whether it is called from R3 or R4 (see rows 5-8 in Table 1).

A more complex case of context-sensitivity, which we call the overlapping

sea problem, arises when one sea is immediately followed by another. Consider,

for example, rule R5 , where the sea A has as its right context B , which is

also a sea. Note that the before-water of B should consume anything up to

its island ’b’ or its own right context, including the island of its preceding

sea A . Now, the before-water of A should consume anything up to either its

island ’a’ or its right context B . But the very search for the right context

will now consume the island we are looking for, since B ’s before-water will

consume ’a’ ! We must therefore take special care to avoid a “shipwreck” in

the case of overlapping seas by disabling the before-water of the second sea.

Therefore B recognizes "..a..b.. " when called from R2 and "b.. " when

called from R5 (see rows 3 and 9 in Table 1). For the detailed example of the

∼a∼ ∼b∼ sequence, see Appendix B.3.

4. Bounded Seas in Parsing Expression Grammars

Starting from the standard definition of PEGs (see Appendix A), we now

show how to add the sea operator to PEGs while avoiding the overlapping sea

problem. To define the sea operator, we first need the following two abstractions:

1. The water operator consumes uninteresting input. Water (≈) is a

new PEG prefix operator that takes as its argument an expression that

specifies when the water ends. We discuss this in detail in subsection 4.1.

2. The NEXT function approximates the boundary of a sea. Intuitively,

NEXT(e) returns the set of expressions3 that can appear directly after a

particular expression e. The details of the NEXT function are given in

subsection 4.2.

3The NEXT function is modelled after FOLLOW sets from parsing theory, except that

instead of returning a set of tokens, it returns a set of parsers.

12

Definition 2 (Sea Operator). Given the definitions of ≈ and NEXT, we define

the sea operator as follows: ∼e∼ is a sequence expression

≈(e / next1 / next2 / ... nextn)
e

≈(next1 / next2 / ... nextn)

where nexti ∈ NEXT (e) for i = 1..n and n = |NEXT (e)|.

That is, the before-water consumes everything up to the island or the bound-

ary, and the after-water consumes everything up to the boundary.

4.1. The Water Operator

The purpose of a water expression is to consume uninteresting input. Wa-

ter consumes input until it encounters the expression specified in its argument

(i.e., the boundary). We must, however, take care to avoid the overlapping sea

problem.

If two seas overlap (one sea is followed by another), the right boundary of

the first sea starts with the second sea. Yet it should only start with the island

of the second sea as illustrated in subsection 3.3. In order to do so, the second

sea has to simply disable its before-water.

We detect overlapping seas as follows: if sea s2 is invoked from the water of

another sea s1, it means that the water of s1 is testing for its boundary s2 and

thus s2 has to disable its before-water. To distinguish between nested seas (e.g.,

∼’x’ ∼island∼ ’x’∼) and overlapping seas (e.g., ∼’x’∼ ∼’y’∼), we

test the position where this sea was invoked. In case of nested seas the positions

differ, and in case of overlapping seas they are the same.

Definition 3 (Extended Semantics of PEGs). In order to detect overlapping

seas and to compute the NEXT set, we extend the original semantics of a PEG

G = {N,T,R, es} (see Definition 8 in Appendix A) with a stack of invoked

expressions and their positions. For standard PEG operators there is no change

except that an explicit stack S is maintained. We define a relation ⇒ from

tuples of the form (x, S) to the output o, where x ∈ T ∗ is an input string to be

13

recognized, S is a stack of tuples (e, p), where e is a parsing expression and p ≥ 0

is a position, and o ∈ T ∗∪{f} indicates the result of a recognition attempt. The

distinguished symbol f 6∈ T indicates failure. Function len(x) returns the length

of an input x. Function (e, p) : S denotes a stack with tuple (e, p) on the top

and stack S below. S is initialized with the pair (es, 0).

We define ⇒ inductively as follows (without any semantic changes for stan-

dard PEG operators):4

Empty:
x ∈ T ∗

(x, (ε, p) : S)⇒ ε

Terminal (success case):
a ∈ T x ∈ T ∗

(ax, (a, p) : S)⇒ a

Terminal (failure case):
a 6= b (a, ε, S)⇒ f

(bx, (a, p) : S)⇒ f

Nonterminal:
A← e ∈ R (x, (e, p) : S)⇒ o

(x, (A, p) : S)⇒ o

Sequence (success case):

(x1x2y, (e1, p) : S)⇒ x1
(x2y, (e2, p+ len(x1)) : S)⇒ x2

(x1x2y, (e1e2, p) : S)⇒ x1x2

Sequence (failure case):
(x, (e1, p) : S)⇒ f

(x, (e1e2, p) : S)⇒ f

Sequence (failure case 2):

(xy, (e1, p) : S)⇒ x
(y, (e2, p+ len(x)) : S)⇒ f

(xy, (e1e2, p) : S)⇒ f

Alternation (case 1):
(xy, (e1, p) : S)⇒ x

(x, (e1/e2, p) : S)⇒ x

Alternation (case 2):

(x, (e1, p) : S)⇒ f
(x, (e2, p) : S)⇒ o

(x, (e1/e2, p) : S)⇒ o

Repetitions (repetition case):

(x1x2y, (e, p) : S)⇒ x1
(x2, (e∗, p+ len(x1)) : S)⇒ x2

(x1x2y, (e∗, p) : S)⇒ x1x2

Repetitions (termination case):
(x, (e, p) : S)⇒ f

(x, (e∗, p) : S)⇒ ε

4Note that in these rules p is implicitly defined as the current position in the input.

14

Not predicate (case 1):
(xy, (e, p) : S)⇒ x

(xy, (!e, p) : S)⇒ f

Not predicate (case 2):
(xy, (e, p) : S)⇒ f

(xy, (!e, p) : S)⇒ ε

A detailed example can be found in Appendix B.3.

Definition 4 (Water Operator). With the extended semantics of PEGs we can

define a prefix water operator ≈ . It searches for a boundary and consumes

input until it reaches a boundary. If the water starts a boundary of another

sea, it stops immediately. Function seasOverlap(S, p1) returns true if there is

a pair (≈ e, p2) on a stack S where p1 = p2 and e is any parsing expression

and returns false otherwise. x ∈ T ∗, y ∈ T ∗, z ∈ T ∗.

Overlapping seas:
seasOverlap(S, p)

(x, (≈ e, p) : S) = ε

Boundary found:

(yz, (e, p) : S)⇒ y
(x′′, (e, p+ len(x′)) : (≈ e, p+ len(x′)) : S)⇒ f

∀x = x′x′′x′′′

(xyz, (≈ e, p) : S) = x

In case of directly nested seas (e.g., ∼∼island∼∼) we obtain the same

behaviour as with ∼island∼ . The function seasOverlap returns true in case a

sea is directly invoked from another sea without consuming any input. Applying

the rule Overlapping seas from Definition 4, water of the inner sea is eliminated

and the boundary is the same for the both seas. Therefore ∼∼island∼∼ is

equivalent to ∼island∼ .

4.2. The NEXT function

Any input that can appear after the sea forms a boundary of a sea. The

NEXT function returns a set of expressions that can appear directly after a

particular expression.

Consider the grammar in the example from Listing 7. The code rule is

defined in such a way that it accepts an arbitrary number of class and structure

islands in the beginning (classes and structures can be in any order) and there

15

is a main method at the end. Intuitively, another class island, a structure island

or a main method can appear after a class island.

The NEXT set approximates the boundary. Its expressions recognize prefixes

of the boundary and not necessarily the whole boundary. The reason for using

NEXT is the limited backtracking ability of PEGs. PEGs are not capable of

taking globally correct decisions because they are not able to revert choices that

have already been taken.5.

code ← (∼class∼/∼struct∼)* mainMethod

class ← ’class ’ ID classBody

stuct ← ’struct ’ ID sbody

mainMethod ← ’public ’ ’method ’ ’main’ block

classBody ← ...

sbody ← ...

block ← ...

ID ← ...

Listing 7: Definition of code that consists of classes and structures followed by main method.

For practical reasons, elements of NEXT cannot accept an empty string.

For example, an optional expression is not a suitable approximation of a

boundary, because it succeeds for any input. Consider a simple expression

∼e∼ ’a’? ’b’ . The ’a’? can appear after the ’island’ but ’b’ as

well if ’a’ fails. Therefore NEXT has to return ’a’? ’b’ , not just ’a’? .

We will use abstract simulation [3] in order to recognize an expression that

accepts an empty string.

Definition 5 (Abstract Simulation). We define a relation ⇀ consisting of pairs

(e, o), where e is an expression and o ∈ {0, 1, f}. If e ⇀ 0, then e can succeed

on some input while consuming no input. If e ⇀ 1, then e can succeed on some

input while consuming at least one terminal. If e ⇀ f , then e may fail on some

input. We will use variable s to represent a ⇀ outcome of either 0 or 1. We

will define the simulation relation ⇀ as follows:

5See for example: http://www.webcitation.org/6YrGmNAi7

16

http://www.webcitation.org/6YrGmNAi7

1. ε ⇀ 0.

2. t ⇀ 1, t ∈ T .

3. t ⇀ f , t ∈ T .

4. A ⇀ o if e ⇀ o and A ← e is a rule of the grammar G.

5. e1e2 ⇀ 0 if e1 ⇀ 0 and e2 ⇀ 0.

e1e2 ⇀ 1 if e1 ⇀ 1 and e2 ⇀ s.

e1e2 ⇀ 1 if e1 ⇀ s and e2 ⇀ 1.

6. e1e2 ⇀ f if e1 ⇀ f

7. e1e2 ⇀ f if e1 ⇀ s and e2 ⇀ f .

8. (a) e1/e2 ⇀ 0 if e1 ⇀ 0

(b) e1/e2 ⇀ 1 if e1 ⇀ 1

9. e1/e2 ⇀ o if e1 ⇀ f and e2 ⇀ o.

10. e∗⇀ 1 if e ⇀ 1

11. e∗⇀ 0 if e ⇀ f

12. !e ⇀ f if e ⇀ s

13. !e ⇀ 0 if e ⇀ f

Because this relation does not depend on the input string, and there are a

finite number of expressions in a grammar, we can compute this relation over

any grammar [3]. An example of abstract simulation can be found in Appendix

B.1.

Definition 6 (NEXT). Let S be a stack of (expression, position) pairs repre-

senting positions and invoked parsing expressions, where 4(S) pops an element

from the stack S returning a stack S′ without the top element, sn, sn−1, ..s2, s1

are expressions on the stack S (top of the stack is to the left, bottom to the

17

right), $$ is a special symbol signaling end of input, and E1 ×E2 is a product

of two sets of parsing expressions, E1 and E2, such that E1 × E2 = {eiej |ei ∈

E1, ej ∈ E2}, we define NEXT(S) as a set of expressions such that:

• if sn = e1 and sn−1 = e1e2 and e2 6⇀ 0 then NEXT(S) = {e2}

• if sn = e1 and sn−1 = e1e2 and e2 ⇀ 0 then NEXT(S) = {e2} ×

NEXT(4(S))

• if sn = e1 and sn−1 = e1e2 then NEXT(S) = {e2}

• if sn = e2 and sn−1 = e1e2 then NEXT(S) = NEXT(4(S))

• if sn = e1 or sn = e2 and sn−1 = e1/e2 then NEXT(S) = NEXT(4(S))

• if sn = e and sn−1 = e∗ then NEXT(S) = e ∪NEXT(4(S))

• if sn = e and sn−1 = !e then NEXT(S) = {}

• if sn = e ∈ N then NEXT(S) = NEXT(4(S))

• if n = 0 (stack is empty) then NEXT(S) = { $$ }

An example of NEXT computation can be found in Appendix B.2.

5. Implementation

As a validation of bounded sea composability and reusability we report on an

implementation of bounded seas in the PetitParser framework.6 The bounded

sea extension of PetitParser is part of Moose — a platform for software and

data analysis.7

6http://scg.unibe.ch/research/IslandParsing/CLSS2015
7http://moosetechnology.org

18

http://scg.unibe.ch/research/IslandParsing/CLSS2015
http://moosetechnology.org

5.1. PetitParser Internals

PetitParser [2, 10] is a PEG-based parser combinator [4] framework utilizing

scannerless parsing [11] and packrat parsing [12]. Implementations of Petit-

Parser exist for Pharo Smalltalk8 (the version we extended), Java9 and Dart.10

PetitParser combinators are subclasses of the PPParser class, which defines

an abstract method parse:anInput . If parsing fails, PPFailure is returned,

otherwise a result is returned. For example, the PPSequence combinator is

subclass of PPParser , having two extra instance variables referring to two

parsers that should be in sequence as you can see in Listing 8. The method

parse:anInput is implemented as shown in Listing 9. The method returns a

failure if either of the two parsers fails, and returns both results in an array if

they both succeed.

PPParser subclass: #PPSequence

"Sequence of two parsers , p1 and p2"

instanceVariables: ’p1 p2 ’.

Listing 8: PPSequence has two instance variables, p1 and p2 .

PPSequence >>parse: anInputStream

| result1 result2 |

result1 ← p1 parse: anInputStream.

result1 ifFailure: [↑ result1].

result2 ← p2 parse: anInputStream.

result2 ifFailure: [↑ result2].

"return array with both results"

↑ { result1 . result2 }

Listing 9: Implementation of PPSequence>>parse: in PetitParser.

5.2. Implementation of BoundedSeas in PetitParser

To support bounded seas, we changed the interface of the parse: anInput

method to parse: aPPContext . PPContext is an object that provides ac-

cess to the stack of invoked expressions. PPContext as well implements the

8http://smalltalkhub.com/#!/~Moose/PetitParser
9https://github.com/petitparser/java-petitparser

10https://github.com/petitparser/dart-petitparser

19

http://smalltalkhub.com/#!/~Moose/PetitParser
https://github.com/petitparser/java-petitparser
https://github.com/petitparser/dart-petitparser

interface of the InputStream so that it can be used as InputStream . In

order to manage the stack of invoked expressions, a parser is dispatched via

PPContext>>invoked: and a value is returned via PPContext>>return: or

PPContext>>fail: .

PPBoundedSea is defined as in Listing 10. Even though a bounded sea

consists of a sequence of three parsers, it has only one instance variable island ,

before-water and after-water being created dynamically depending on the state

of PPContext . The parse: method of PPBoundedSea is in Listing 11. The

three phases of parse: correspond to the phases in Definition 1. In order

to detect an overlapping sea, there is a check in parseBeforeWater: (see

Listing 12).

PPParsersubclass: #PPBoundedSea

instanceVariables: ’island ’.

Listing 10: PPBoundedSea has only one instance variable island , before and after-water

are created dynamically, depending on the state of the PPContext .

PPBoundedSea >>parse: aPPContext

| result1 result2 result3 |

aPPContext invoked: self.

"Phase One"

result1 ← self parseBeforeWater: aPPContext.

result1 ifFailure: [

↑ aPPContext fail: ’boundary or island not found’

].

"Phase Two"

result2 ← island parse: aPPContext

result2 ifFailure: [

↑ aPPContext fail: ’island not found’

]

"Phase Three"

result3 ← self parseAfterWater: aPPContext.

result3 ifFailure: [

↑ aPPContext fail: ’boundary not found’

].

↑ aPPContext return: { result1 . result2 . result3 }

Listing 11: Implementation of a parse: method in PPBoundedSea . The three phases

corresponds to the phases in the Definition 1.

20

PPBoundedSea >>parseBeforeWater: aPPContext

| next |

"Catch Overlapping Seas Problem"

aPPContext seasOverlap ifTrue: [

↑ nil

].

next ← aPPContext next.

↑ self goUpTo: island / next.

Listing 12: Implementation of a beforeWater: method in PPBoundedSea .

PPContext manages the parsing expression invocation stack, computes the

next set and detects the overlapping seas. Thanks to the fact that the method

invocation stack can be accessed in the Pharo environment, PPContext can

reuse the method invocation stack to access the invoked expressions. Because

the method invocation stack does not contain the invoked position, PPContext

manages this separately and only for PPBoundedSea parsers (see Listing 13).

Overlapping seas can be detected trivially (see Listing 14). The NEXT func-

tion implementation follows straightforwardly from recursive Definition 6 (see

Listing 15).

PPContext >>invoked: parser

self assert: parser isBoundedSea.

self invokedPositions push: self position.

PPContext >>return: parser

self assert: parser isBoundedSea.

self invokedPositions pop.

Listing 13: Implementation of a invoked: method and return: method in PPContext .

PPContext >>seasOverlap

↑ self invokedPositions top ==

self invokedPositions secondTop

Listing 14: Implementation of a seasOverlap method in PPContext .

PPContext >>next

| stack |

stack ← self expressionStackFrom: thisContext.

↑ self next: stack into: Set new

21

PPContext >>next:stack into: set

"first sequence case: e1 on top , e1e2 second top ,

e2 isNotNullable then NEXT = {e2}"

(stack secondTop isSequence and:

[stack secondTop first == stack top] and:

[stack secondTop second isNullable not]) ifTrue: [

set add: stack secondTop second.

↑ set

]

...

"repetition case"

(stack secondTop) isRepetition ifTrue: [

set add: stack pop.

↑ self next: stack into: set

]

Listing 15: Fragment of a next method in PPContext .

5.3. Performance

In this section we briefly report on the performance of bounded seas. We fo-

cus on the time complexity of the three different placements of a sea: standalone

seas, repetition of a sea and a nested sea.

We performed measurements on the following parsers and inputs:

1. Stand-alone sea ∼’a’∼ searches for the island "a " in an input. An

input consists of randomly generated string of dots . (representing water)

and a single character "a " at a random position.

2. Repetition of a sea ∼’a’∼ + searches for sequences of islands "a " in

an input. An input consists of a randomly generated string of dots . (for

water) and island characters "a " , e.g., "..a.....a....a...aa.. " .

3. Nested sea block ← ∼’{’ block+ / ∼ ε ∼ ’}’∼ + searches for

sequences of nested blocks in an input. An input consists of block starting

with "{" and ending with "}" . A block contains a possibly empty

sequence of other blocks, e.g., "{...{}.{.{..}.}...}" .

Figure 1 shows that the time complexity is linear compared to the input size

for a stand-alone sea and a repetition of a sea. For the nested sea, we mea-

22

sured an exponential complexity. All of the measured parsers used a memoized

version [12, 13] of bounded seas.

Figure 2 reports on equivalents of bounded seas implemented without using

the bounded sea operator. The complexity of these parsers is linear. We see

that there is room for improvement and this still remains an open issue.

In the case studies we performed (section 7 and section 8), bounded seas

showed performance comparable to the non-bounded seas versions. We assume

that the typical size of the input and parser complexity used in the case studies

is below the threshold where the exponential complexity manifests itself. To

support our assumption, Figure 3 compares a bounded sea parser and a non-

bounded sea equivalent. Both parsers extract Java methods from Java standard

library files (details about extracting Java methods are provided in section 7)

with a comparable time performance.

 0

 10000

 20000

 30000

 40000

 50000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

T
im

e
 t
o
 R

u
n
 [
m

s
]

Input Size [bytes]

Performance of Memoized Bounded Sea

Standalone Sea
Repetition of a sea

Nested sea

Figure 1: The performance comparison of memoized bounded seas for a stand-alone sea

∼’a’∼ , a repetition of a sea ∼’a’∼ + and for nested sea on randomly generated inputs.

23

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

T
im

e
 t
o
 R

u
n
 [
m

s
]

Input Size [bytes]

Performance of Non-Bounded Sea Equivalents

Standalone Sea
Repetition of a sea

Nested sea

Figure 2: The performance comparison of non-bounded sea equivalents for a stand-alone sea

∼’a’∼ , a repetition of a seas ∼’a’∼ + and for a nested sea on randomly generated

inputs.

 0

 1000

 2000

 3000

 4000

 5000

 0 20000 40000 60000 80000 100000

T
im

e
 t
o
 R

u
n
 [
m

s
]

Input Size [bytes]

Performance on extracting Java methods

Bounded Seas
Without Bounded Seas

Figure 3: The performance comparison of a bounded sea parser and its non-bounded sea

equivalent on extracting Java methods from approximately four hundred files from the Java

standard library.

24

6. Discussion

In this section we discuss some implementation decisions of bounded seas

as well as an implementation of bounded seas for generalized LL grammars

and parser combinator libraries. We also discuss why the NEXT set is needed

instead of the simpler FOLLOW sets.

6.1. Bounded Seas as Meta-syntactic Sugar

Bounded seas can be implemented in two ways: as a meta-syntactic sugar or

as a parser extension. In this work we take the latter approach. There are several

reasons why we did not choose a grammar transformation that transforms a sea

expression into a standard PEG expression.

First, it is easier to implement the NEXT function and detect overlapping

seas during parsing than detecting overlapping seas statically and transforming

the boundary in such a way that the overlapping seas problem cannot arise.

Second, PetitParser is a very agile framework where a parser can be updated

simply by changing an object reference at any time. Furthermore, the graph

of parser combinators corresponds exactly to the grammar, which makes Pe-

titParser easy to understand and debug. Grammar transformation would add

an extra level of complexity into the implementation and it would complicate

comprehension and debugging.

6.2. Generalized LL Parsing

In this paper we have discussed bounded seas for PEGs. However, the essence

of bounded seas is not in the grammar formalism used but in the fact that

water is specific for each island and it is computed automatically from a stack

of invoked expressions. We argue that bounded islands are useful for Context

Free Grammars (CFGs) [14] as well.

The key difference between PEGs and CFGs is that CFGs may return am-

biguous results whereas PEGs cannot. Implementing an island grammar as

a CFG may lead to ambiguous results even though only one of the results is

25

desired. The undesired, remaining results are present only because of vaguely-

defined water. This is problematic since it is hard to decide which of the results

is the correct one.

Bounded seas eliminate ambiguities by adopting a more precise definition of

water. Water of a bounded sea never consumes any input that might be valid

in a given parsing context. Even though we define a bounded sea with an island

’y’ and we run such a rule on the input "xyzy " , the water of the bounded

sea consumes only "x " , never "xyz " , thus avoiding ambiguities.

Generalized LL Parsing [15] can handle any CFG, allows all the choices of

CFGs to be explored in parallel, and, in case of ambiguity returns all possible

results. Bounded seas can be implemented in a GLL parser because their top-

down nature allows for a stack of parsing expressions and they support syntactic

predicates used in a boundary.

6.3. Integration With Monadic Parser Libraries

To compute NEXT (e1) in a sequence e1e2 we need to know what e2 is.

However in some cases, e.g., in monadic parser combinator [4] libraries, e2 could

be a closure. For example, when parsing the HTTP header containing a value

indicating the length of a content11, we might read that value and use it to

create the parser that reads the content itself (i.e., by length-times reading a

character):

length >>= \length -> applyNTimes length readChar

Now, if we want to use a bounded sea to extract the length, i.e.,

∼length∼ >>= \length -> applyNTimes length readChar

we cannot determine the boundary of ∼length∼ , because it depends on the

result of the length . As a consequence we can only use bounded seas in a

sequence e1e2 if we can compute e2 before parsing the e1.

11https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

26

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Bounded seas do not allow for context-sensitive dependencies between an

island and its border, but for one exception: when a sea is bounded by another

sea, we disable water if another water is already invoked at the same position.

6.4. FOLLOW vs. NEXT

The NEXT function introduces extra complexity into bounded seas, even

though it resembles the FOLLOW function from LL parsing theory [16, pp.

235-361]. The key difference between FOLLOW and NEXT is that the former

returns only terminals, while the latter returns parsing expressions.

Why is it not sufficient to use the well-known FOLLOW sets instead of the

more complicated NEXT function? The reason is that the right context (bound-

ary) of a sea is in general an LL(k), k ≥ 1 language, and a simple FOLLOW set

is not usually sufficient to recognize the boundary.

As an example, consider the grammar from Listing 7. The boundary of

class isNEXT (class) = { ∼class∼ , ∼struct∼ , mainMethod }. Sup-

pose that instead we take as the boundary of class its FOLLOW set, i.e.,

FOLLOW (class) = { ’class’ , ’struct’ , ’public’ }. If there are other

elements in the input that start with ’public’ (e.g., "public int i = 0; "),

they will be indistinguishable from the mainMethod and the water of bounded

seas would finish in an invalid position.

Bounded seas are supposed to work only with a skeleton of an original gram-

mar with as little information as possible. Therefore, information about other

input that can interfere with a boundary (e.g., "public int i = 0; ") is not

usually available. If bounded seas are are provided with a baseline grammar this

would not be problem as the techniques described by Klusener and Lämmel [17]

can then be applied.

7. Java Parser Case Study

The goal of this case study is to demonstrate the suitability of bounded seas

for extracting data from Java sources without any baseline grammar provided.

27

First we focus on a simpler task without considering nested classes. Because

bounded seas target extensibility we subsequently investigate the effort required

to extend the parser with nested classes.

We compare four kinds of Java parsers and we measure how well can they

extract classes and their methods from a Java source code.12

1. PetitJava is an open-source Java parser using PetitParser [2] provided

by the Moose analysis platform community [18]. We used version 159.13

2. Näıve Island Parser is an island parser with water defined simply as

the negation of the island we are searching for. The sea rules in this parser

can be reused, because they do not consider their surroundings and they

are grammar-independent. The sea rules are defined in a simple form:

consume input until an island is found, then consume an island.

3. Advanced Island Parser is a more complex version of the näıve is-

land parser. The water is more complicated to prevent the most frequent

failures of island parsers. The sea rules in this parser are hard-wired to

the grammar and cannot be reused. The sea rules are customized for a

particular islands.

4. Island Parser with Bounded Seas is an island parser written using

bounded seas. The sea rules were defined using the sea operator.

The PetitJava parser parses Java 6 code. All the island parsers (island,

advanced and bounded) are very similar, with approximately 20 rules per each.

PetitJava itself contains over 200 rules. The island parsers were designed to

extract classes and the methods that belong to them. None of the parsers was

optimized to provide a better performance.

We compare the three island parsers (almost identical in a structure) written

by the first author. It is very likely that the advanced island parser can be

12The case study and instructions can be found at the following prepared web-page:

http://scg.unibe.ch/research/IslandParsing/CLSS2015.
13http://smalltalkhub.com/#!/~Moose/PetitJava/

28

http://scg.unibe.ch/research/IslandParsing/CLSS2015
http://smalltalkhub.com/#!/~Moose/PetitJava/

modified to achieve better precision and better performance, but at the cost

of considerable engineering work. We demonstrate that näıve water rules do

not work and that the advanced version of water is needed. We further show

that with bounded seas we can obtain high precision and performance without

needing to define an advanced island parser. Finally, we show that extending

an island parser is a highly demanding task, unless bounded seas are used.

Test Data. For our case study we randomly selected 50 files (N) containing 50

classes from the JDK 6 library. These 50 classes contain 81 nested classes and a

total of 1380 methods M . We extract the reference data using the VerveineJ14

parser.

Each parser returns a set m of fully-qualified method names15, some of which

are true positives mtp. If a parser fails, an error is returned and the set of all

errors is e. Failure is treated as though no classes or methods were found. We

measure precision P = |mtp|/|m|), recall R = |mtp|/|M |, error rate err = |e|/N

and time per file t = ttotal/N .

7.1. Without Nested Classes

First of all, we evaluate our parsers on extracting method names without

considering the nested classes and their methods. We can easily skip the nested

classes by defining properly paired blocks starting with ’{’ and ending with

’}’ and ignoring everything inside.

Results. As we see in Table 2, PetitJava parser provides perfect precision, but

recall is poor because of the high error rate.16 On the other hand, the error rate

of all island parsers (island, advanced and bounded) is very low,17 but precision

and recall are not perfect, even though they are relatively good. Amongst the

imprecise parsers, the Bounded parser provides the best precision and recall.

14https://gforge.inria.fr/projects/verveinej
15http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.7
16The PetitJava failures are due to bugs in the grammar specification.
17Failures of the imprecise parsers are due to parsing timeout (set to 10 seconds).

29

https://gforge.inria.fr/projects/verveinej
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.7

Parser Precision Recall Time [ms] Error Rate

PetitJava 1.00 0.71 308 0.28

Island 0.87 0.90 1225 0.04

Advanced 0.92 0.90 1336 0.04

Bounded 0.96 1.00 941 0.00

Table 2: Precision, recall error rate and time of the four tested parsers without considering

nested classes.

7.2. With Nested Classes

In this step, we extend our island parsers to include nested classes and

their methods. We do this by making a single change, where we extend the

classBody rule from this18:

classBody ← ’{’ method island * ’}’

to this:

classBody ← ’{’ (method / class) island * ’}’

Parser Precision Recall Time [ms] Error Rate

PetitJava 1.00 0.67 299 0.28

Island 0.87 0.54 934 0.12

Advanced 0.94 0.32 1734 0.34

Advanced′ 0.91 0.68 847 0.03

Bounded 0.97 0.99 627 0.00

Table 3: Precision, recall, time and error rate including nested classes.

Results. As we see in Table 3 the PetitJava parser performs as in the previous

case. Yet the imprecise parsers (Island, Advanced) start to struggle. Their error

rate has increased and recall has dropped dramatically. The errors were mostly

18island here creates either an island, an advanced island or a bounded sea depending on

the parser we use.

30

due either to parsing timeouts (when parsing took more than ten seconds per

file) or various parsing errors. On the other hand, the Bounded parser maintains

high precision and recall, zero error rate, and improves time per file slightly.

In Table 3 we also measured the Advanced′ parser, which made use of refined

rules for water to take into account the grammar changes.19 This improved

recall, parsing time and the error rate. We would, however, need to invest even

more effort to reach the quality of the Bounded parser.

8. Ruby Parser Case Study

The standard approach to recognize the structure of the input is to track all

language elements that affect structure, as we did in the Java case study where

we defined a rule for blocks. As it turns out, almost anything can affect the

structure of a Ruby program. For this reason, we turned to indentation as it

turns out to be a good proxy for structure [19]. In this case study we focus on

using bounded seas to extract the structure of a Ruby program by exploiting

indentation.20

8.1. The Dangling End Problem

Ruby poses interesting parsing challenges even for imprecise parsers. The

biggest problem we faced is the dangling end problem: Normally a control struc-

ture like an if statement terminates with end . However there is also an if

modifier, as in return error if check? , which does not require an end .

Such modifiers pose problems for parsing. There exist numerous such modi-

fiers in Ruby21, which resemble conditional blocks, but have a different syntax.

19We investigated the reasons for failures and added an extra boundary to classBody .
20The case study and instructions can be found at the prepared web-page:

http://scg.unibe.ch/research/IslandParsing/CLSS2015.
21http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#if-mod

http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#unless-mod

http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#while-mod

http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#until-mod

31

http://scg.unibe.ch/research/IslandParsing/CLSS2015
http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#if-mod
http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#unless-mod
http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#while-mod
http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#until-mod

From the perspective of an imprecise parser, it is hard to distinguish between a

modifier, loops and conditional blocks.

Ruby structures (such as classes, methods, blocks) end with the ’end’

keyword (see Listing 16). To capture the structure of Ruby code, we need

to define rules for these structural elements, including conditional blocks and

others, such as loops, do blocks, and brace pairs.

class Shape

def draw

if (x > 0)

do_something ()

end

end

end

Listing 16: Example of a Ruby code.

Ruby modifiers are not paired with any ’end’ as we can see in Listing 17.

If we incorrectly pair ’end’ , we change the structure of a program. Unfortu-

nately, it is hard to recognize when ’if’ belongs to a modifier and when to

a conditional block, unless we specify a complete grammar to recognize all the

constructs that it could possibly modify.

class Shape

def draw

return error if check?

if (x > 0)

do_something

end

end

end

Listing 17: Example of Ruby code where ’if’ is not paired with any ’end’ .

8.2. Indentation

It is known that indentation is a good proxy for structure in programming

languages [19]. We can exploit this fact to define a context-sensitive parser

that uses both indentation and bounded seas to recognize modifiers. From the

perspective of indentation, modifiers look like loops or conditional blocks with

a single line scope.

32

Because PetitParser produces scannerless parsers [11] and it doesn’t use

any preprocessing (i.e., tokenizing), an indentation-sensitive parser is context-

sensitive since the question whether code is indented or not depends on the

results of previously invoked parsers.

Inspired by Landin’s offside rule [20], indentation in PetitParser uses a stack

of indentation levels and adds extra layout-oriented parsing expressions (e.g.,

align, inOffside). These expressions consult the stack and the current indenta-

tion level to verify that the input complies with the given layout criteria [21].

Although we have seen earlier that bounded seas are incompatible with

monadic parser libraries where a boundary may depend on what has been parsed

earlier, indentation parsing is a special case that does not interfere with bounded

seas. As we shall see, the use of indentation-sensitive parsers simplifies the im-

plementation of the parsers and even improves the overall performance.

We define a context-sensitive grammar that recognizes modules, classes,

methods and class methods in Ruby code by utilizing indentation and bounded

seas. The scope of a class or method extends as far as code appears to the right

of the class or method declaration (i.e., in the onside position). The class

definition is in Listing 18.

class ← setOffsideLine , ’class’ identifier

∼(class / method)∼ onside *

unsetOffsideLine

Listing 18: Indentation Sensitive definition of a Ruby class.

8.3. Parsing Results

In this section we report on the complexity, performance, precision and recall

of three parsers: a classical island parser (46 grammar rules, 9K characters), a

bounded parser that does not utilize indentation (41 rules, 8.5K characters), and

an indent bounded parser that utilizes indentation (27 rules, 4K characters).

The island parser and the bounded parser are almost identical. The sea

parser uses bounded seas, while the island parser uses manually defined islands

and water. From the number of methods, we can see that indentation simplifies

33

method ← ’def’ name arguments primary* ’end’

primary ← (!(comment / keyword / modifier / ...)

#any)*

(method / class)

arguments ← ...

Listing 20: Method definition in Island Grammar.

the implementation. The bounded parser and the island parser must implement

additional rules to recognize the dangling end.

The bounded parser shows its flexibility here. For example, the method

definition in the bounded grammar does not require arguments (Listing 19)

contrary to the method definition in the island grammar (Listing 20).

methodDef ← ’def’ name primary* ’end’

primary ← ∼method / class∼

Listing 19: Method definition in the Bounded Grammar.

To measure precision and recall, we used jruby-parser22 as a reference parser.

We compared the structure (modules, classes, methods and class methods) of

Ruby code as detected by jruby-parser with the structure detected by our

parsers. We describe the structure as a set of methods where each method

is prepended with a path consisting of other methods, classes and modules de-

pending on the location of the method in a code, similar to Java’s fully qualified

names. For example:

<module >graphics.<class >Shape.<method >draw

refers to a method draw defined in the class Shape . The Shape belongs to

the graphics module. On the other hand:

<class >Shape.<class >Renderer.<class -method >Instance

refers to the class-side method Instance of the Shape ’s inner class Renderer .

22https://github.com/jruby/jruby-parser

34

https://github.com/jruby/jruby-parser

Test Data. We performed our study on a sample of N = 100 files of six popular

projects on Github: Rails23, Discourse24, Diaspora25, Cucumber26, Valgrant27

and Typhoeus.28 The sampled files contain a total of 520 methods.

Parsers return a set of fully qualified methods m, where some of them are

true positives mtp. If a parser fails, an error is returned. The set of all errors

is e. We measure precision P = |mtp|/|m|), recall R = |mtp|/|M |, error rate

err = |e|/N and time per file t = ttotal/N . Failure is treated as though no

classes or methods are found.

Parser Precision Recall Time [ms] Error Rate

Island Parser 1.00 0.96 495 0.03

Bounded Parser 0.97 0.96 283 0.01

Indent Bounded Parser 0.99 0.99 203 0.00

Table 4: Precision, recall error rate and time of compared parsers.

Table 4 shows precision and recall are rather high in all of the cases. The

island parser has perfect precision, but recall is not perfect due to some failures.

The bounded parser has worse precision, because it did not fail for one of the

inputs, but misplaced the methods into the wrong module. The indent bounded

parser can parse any of the files with very high precision and recall. It misplaced

only one29 of all the methods.

As we have seen, the island parser contains 46 rules, the bounded parser 41,

and the indent parser 27. This shows that both bounded seas and indentation

help to reduce the complexity of the Ruby grammar. Bounded seas perform

better than traditional islands. The indentation parser is even better than the

23https://github.com/rails/rails
24https://github.com/discourse/discourse
25https://github.com/diaspora/diaspora
26https://github.com/cucumber/cucumber
27https://github.com/mitchellh/vagrant
28https://github.com/typhoeus/typhoeus
29If a method declaration with a modifier follows an inner class defined on a single line,

the method with the modifier is incorrectly assigned to the inner class.

35

https://github.com/rails/rails
https://github.com/discourse/discourse
https://github.com/diaspora/diaspora
https://github.com/cucumber/cucumber
https://github.com/mitchellh/vagrant
https://github.com/typhoeus/typhoeus

bounded parser, because fewer rules are needed to determine the boundaries.

9. Related Work

Agile Parsing. Agile parsing [7] is a recent paradigm for source analysis and

reverse engineering tools. In agile parsing the effective grammar used by a

particular tool is a combination of two parts: the standard base grammar for the

input language, and a set of explicit grammar overrides that modify the parse

to support the task at hand. There are several agile parsing idioms: i. rule

abstraction (grammar rules can be parametrized); ii. grammar specialization

(grammar rules can be specialized based on the semantic needs); iii. grammar

categorization (to deal with context-free ambiguities); iv. union of grammars (to

unify multiple grammars); v. markup (to match and mark chunks of interest);

vi. semi-parsing (to define islands and lakes); and vii. data structure grammars

(separate grammars that hold auxiliary data structures).

The semi-parsing idiom [7] uses the not predicate to prevent water from

consuming islands. This approach is the same as that taken by bounded seas.

Contrary to the semi-parsing idiom, bounded seas are able to infer the predicates

on their own. The agile parsing idioms are based on a transformation of a

well-defined baseline grammar, whereas bounded seas do not expect such a

well-defined grammar and must infer the predicates only from the available

skeleton.

Island Grammars. Island grammars were proposed by Moonen [1] as a method

of semi-parsing to deal with irregularities in the artifacts that are typical for the

reverse engineering domain. Island grammars make use of a special syntactic

rule called water that can accept any input. Water is annotated with a special

keyword avoid that will ensure that water will be accepted only if there is no

other rule that can be applied.

Contrary to Moonen, we propose boundaries (based on the NEXT function)

that limit the scope in which water can be applied. Because each island has a

36

different boundary, our solution does not use the single water rule; instead our

water is tailored to each particular island.

Non-Greedy Rules. Non-greedy operators are well-known from regular expres-

sions introduced in Perl.30 ?? , *? , and +? are non-greedy versions of ? , *

and + , which match as little of a string as possible while preserving the overall

match. The backtracking algorithm admits a simple implementation of non-

greedy operators: try the shorter match before the longer one. For example, in

a standard backtracking implementation, e? first tries using e and then tries

not using it; e?? uses the other order.31

Non-greedy operators are also available in ANTLR as parser operators. A

non-greedy parser matches the shortest sequence of tokens that preserves a

successful parse for a valid input sentence. Contrary to regular expressions, a

non-greedy parser never makes a decision that will ultimately cause valid input

to fail later on during the parse. The central idea is to match the shortest

sequence of tokens that preserves a successful parse for a valid input sentence.32

Bounded seas are distinct from non-greedy rules in two ways. First, bounded

seas do not require globally correct decisions, since they are not available in

traditional PEGs. Though PEGs can backtrack while choosing between alter-

natives, once the choice is made it cannot be changed, thus making a globally

correct decision impossible. In order to realize non-greedy repetitions, PEGs

feature predicates, which have to be specified by an engineer (as illustrated

in section 2). Bounded seas remove the burden of predicates from a language

engineer by computing the NEXT set automatically.

Second, bounded seas target transparent composability. A language en-

gineer can treat a bounded sea like any other PEG rule without bothering

about its implementation. For example, the following grammar can be eas-

30http://perldoc.perl.org/perlre.html
31https://swtch.com/~rsc/regexp/regexp1.html
32https://theantlrguy.atlassian.net/wiki/display/ANTLR4/Wildcard+Operator+and+

Nongreedy+Subrules

37

http://perldoc.perl.org/perlre.html
https://swtch.com/~rsc/regexp/regexp1.html
https://theantlrguy.atlassian.net/wiki/display/ANTLR4/Wildcard+Operator+and+Nongreedy+Subrules
https://theantlrguy.atlassian.net/wiki/display/ANTLR4/Wildcard+Operator+and+Nongreedy+Subrules

ily modified by changing the body to body ← sea* , body ← sea? or

body ← sea? sea? .

start ← (’begin’ body ’end’)*

body ← sea

sea ← ∼sea∼

If we define sea using lazy repetition *? , the normal sea can be defined as:

start ← (’begin’ body ’end’)*

body ← sea

sea ← .*? ’body’ .*?

the optional version as:

start ← (’begin’ body)*

body ← sea

sea ← .*? (’body’|’end’)

the repetition version as:

start ← (’begin’ body ’end’)*

body ← sea

sea ← (’body’|.)*?

and the sequence of two optional seas as:

start ← (’begin’ body)*

body ← sea1

sea1 ← .*?(’body1 ’ sea2 | ’body2 ’ ’end’ | ’end’)

sea2 ← .*?(’body2 ’ ’end’ | ’end’)

Noise Skipping Parsing. GLR* is a noise-skipping parsing algorithm for context-

free grammars able to parse any input sentence by ignoring unrecognizable parts

of the sentence [22]. The parser nondeterministically skips some words in a

sentence and returns the parse with fewest skipped words. The parser is a

modification of Generalized LR (Tomita) parsing algorithm [23].

The GLR* application domain is parsing of spontaneous speech. Contrary

to bounded seas, GLR* itself decides what is noise (water in our case) and where

it is. In the case of bounded seas the positions of the noise (water) are explicitly

defined.

38

Fuzzy Parsing. The term fuzzy parser was coined for Sniff [24], a commercial

C++ IDE that uses a hand-made top-down parser. Sniff can process incomplete

programs or programs with errors by focusing on symbol declarations (classes,

members, functions, variables) and ignoring function bodies. In linguistics or

natural language processing [25], the notion of fuzzy parsing corresponds to an

algorithm that recognizes fuzzy languages.

The semi-formal definition of a fuzzy parser was introduced by Koppler [26].

Fuzzy parsers recognize only parts of a language by means of an unstructured

set of rules. Compared with whole-language parsers, a fuzzy parser remains idle

until its scanner encounters an anchor in the input or reaches the end of the

input. Thereafter the parser behaves like a normal parser. In the fuzzy parsing

framework, islands can occur in any order, always start with a terminal and

everything between them is ignored; in the bounded seas paradigm, the islands

are constrained by the context-free structure.

Skeleton Grammars. Skeleton grammars [17] address the issue of false positives

and false negatives when performing tolerant parsing by inferring a tolerant

(skeleton) grammar from a precise baseline grammar.

Our approach tackles the same problem as skeleton grammars: improving the

precision of island grammars. They both maintain the composability property

and both can be automated. Skeleton grammars use the standard first and sets

known from standard parsing theory [16, pp. 235-361] for synchronization with

the baseline grammar.

Bounded seas do not require a precise baseline grammar and they have

to find point of synchronization based only on the the main grammar itself.

Therefore the main grammar has to contain all the relevant information (e.g.,

when extracting classes and methods with bounded seas block definitions are

essential to place methods properly). Because the main grammar of bounded

seas is typically far from complete, bounded seas use the NEXT set (instead of

first and follow) to reach the required precision. If bounded seas are provided

with the baseline grammar, the boundaries can be computed from the baseline.

39

Bridge Parsing. Bridge parsing is a novel, lightweight recovery algorithm that

complements existing recovery techniques [27]. Bridge parsing extends an island

grammar with the notion of bridges and reefs. Islands denote tokens that open

or close scopes. Reefs are attributed tokens and they add information (e.g., in-

dentation) to nearby islands. Islands and reefs are created in a tokenizing phase.

Bridges connect matching opening and closing islands in a bridge-building phase.

The corresponding islands are searched with the help of reefs (e.g., indentation

can be used to find matching brackets). If some islands are not connected (e.g.,

if the opening or closing scope island is missing), the bridge repair phase tries

to repair them with the help of information from reefs.

The focus of bounded seas is on data extraction rather than on error recovery

and bounded seas are missing advanced error-recovery techniques available in

the bridge parsing. Bounded seas are meant to be used on valid inputs without

errors. If an erroneous chunk appears, bounded seas skip such a chunk until a

valid chunk is found. To our best knowledge, techniques used in bridge pars-

ing are complementary to bounded seas and might help improve precision of

bounded seas on erroneous inputs.

Permissive Grammars. The main idea of permissive grammars [28, 29] is to de-

rive a permissive grammar from a standard grammar. Such a permissive gram-

mar accepts programs with minor errors (missing brackets, etc.). A permissive

grammar is also a normal grammar and can be tweaked by the language engi-

neer. Using a specialized version of the GLR algorithm, both syntactically cor-

rect and incorrect programs can be efficiently parsed using these grammars [28].

Contrary to bounded seas, which target the area of rapid data extraction,

permissive grammars are supposed to help IDE developers with interactive pars-

ing and error recovery as the user is writing a program. Similarly to bounded

seas, permissive grammars extend the concept of island grammars and use water

for error recovery. Even though bounded seas can be used to skip over noise in

an input, bounded sea handle missing or misspelled input simply by ignoring

the whole erroneous chunk until a valid chunk is found. Permissive grammars

40

try to find the best way to fix an erroneous chunk (and not only skip over it).

10. Conclusion

In this paper we have presented bounded seas — composable, reusable, ro-

bust and easy to use islands. Contrary to the traditional approach of island

parsing, bounded seas compute the scope within which water can consume the

input. We have extended the semantics of PEGs to implement useful and prac-

tical bounded seas. Boundaries are computed by a NEXT function, inspired by

the follow function from standard parsing theory. The automation of the process

that creates the bounded sea ensures that bounded seas are easy to use and are

not error-prone. Bounded seas as presented in this work are context-sensitive.

As a validation of the composability and reusability of bounded seas, we

have presented an implementation of bounded seas as a parser combinator in

the PetitParser framework. Furthermore we have presented two case studies

applying bounded sea parsers to extracting method names from Java and Ruby

code, and we have compared these parsers to conventional parsers based on a

precise grammar and based on island grammars. We show that bounded seas

provide both good precision and performance.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Sci-

ence Foundation for the project “Agile Software Assessment” (SNSF project

No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

We also thank the anonymous referees for their invaluable comments.

References

[1] L. Moonen, Generating robust parsers using island grammars, in: E. Burd,

P. Aiken, R. Koschke (Eds.), Proceedings Eighth Working Conference on

Reverse Engineering (WCRE 2001), IEEE Computer Society, 2001, pp. 13–

22. doi:10.1109/WCRE.2001.957806.

41

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.1027
http://dx.doi.org/10.1109/WCRE.2001.957806

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

13.1027

[2] L. Renggli, S. Ducasse, T. Gı̂rba, O. Nierstrasz, Practical dynamic gram-

mars for dynamic languages, in: 4th Workshop on Dynamic Languages

and Applications (DYLA 2010), Malaga, Spain, 2010, pp. 1–4.

URL http://scg.unibe.ch/archive/papers/

Reng10cDynamicGrammars.pdf

[3] B. Ford, Parsing expression grammars: a recognition-based syntactic foun-

dation, in: POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, ACM, New York,

NY, USA, 2004, pp. 111–122. doi:10.1145/964001.964011.

URL http://pdos.csail.mit.edu/~baford/packrat/popl04/

peg-popl04.pdf

[4] G. Hutton, E. Meijer, Monadic parser combinators, Tech. Rep. NOTTCS-

TR-96-4, Department of Computer Science, University of Nottingham

(1996).

URL citeseer.ist.psu.edu/hutton96monadic.htmlhttp://eprints.

nottingham.ac.uk/237/1/monparsing.pdf

[5] P. Klint, E. Visser, Using filters for the disambiguation of context-free

grammars, in: Proc. ASMICS Workshop on Parsing Theory, 1994, pp. 1–

20.

[6] M. van den Brand, J. Scheerder, J. J. Vinju, E. Visser, Disambiguation

filters for scannerless generalized LR parsers, in: N. Horspool (Ed.), Com-

piler Construction (CC’02), Vol. 2304 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, Grenoble, France, 2002, pp. 143–158.

URL http://www.cs.uu.nl/people/visser/ftp/BSVV02.pdf

[7] T. R. Dean, J. R. Cordy, A. J. Malton, K. A. Schneider, Agile parsing in

TXL, Autom. Softw. Eng. 10 (4) (2003) 311–336.

URL http://research.cs.queensu.ca/~cordy/Papers/JASE_AP.pdf

42

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.1027
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.1027
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf
http://pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf
http://dx.doi.org/10.1145/964001.964011
http://pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf
http://pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf
citeseer.ist.psu.edu/hutton96monadic.html http://eprints.nottingham.ac.uk/237/1/monparsing.pdf
citeseer.ist.psu.edu/hutton96monadic.html http://eprints.nottingham.ac.uk/237/1/monparsing.pdf
citeseer.ist.psu.edu/hutton96monadic.html http://eprints.nottingham.ac.uk/237/1/monparsing.pdf
http://www.cs.uu.nl/people/visser/ftp/BSVV02.pdf
http://www.cs.uu.nl/people/visser/ftp/BSVV02.pdf
http://www.cs.uu.nl/people/visser/ftp/BSVV02.pdf
http://research.cs.queensu.ca/~cordy/Papers/JASE_AP.pdf
http://research.cs.queensu.ca/~cordy/Papers/JASE_AP.pdf
http://research.cs.queensu.ca/~cordy/Papers/JASE_AP.pdf

[8] V. Zaytsev, Formal foundations for semi-parsing, in: Software Mainte-

nance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Soft-

ware Evolution Week - IEEE Conference on, 2014, pp. 313–317. doi:

10.1109/CSMR-WCRE.2014.6747184.

URL http://grammarware.net/text/2014/semiparsing.pdf

[9] R. Frost, J. Launchbury, Constructing natural language interpreters

in a lazy functional language, Comput. J. 32 (2) (1989) 108–121.

doi:10.1093/comjnl/32.2.108.

URL https://courses.cit.cornell.edu/ling4424/

frost-launchbury.pdf

[10] J. Kurs, G. Larcheveque, L. Renggli, A. Bergel, D. Cassou, S. Ducasse,

J. Laval, PetitParser: Building modular parsers, in: Deep Into Pharo,

Square Bracket Associates, 2013, p. 36.

URL http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.

pdf

[11] E. Visser, Scannerless generalized-LR parsing, Tech. Rep. P9707, Program-

ming Research Group, University of Amsterdam (Jul. 1997).

URL http://www.cs.uu.nl/people/visser/ftp/P9707.ps.gz

[12] B. Ford, Packrat parsing: simple, powerful, lazy, linear time, functional

pearl, in: ICFP 02: Proceedings of the seventh ACM SIGPLAN interna-

tional conference on Functional programming, Vol. 37/9, ACM, New York,

NY, USA, 2002, pp. 36–47. doi:10.1145/583852.581483.

URL http://pdos.csail.mit.edu/~baford/packrat/icfp02/

packrat-icfp02.pdf

[13] B. Ford, Packrat parsing: a practical linear-time algorithm with backtrack-

ing, Master’s thesis, Massachusetts Institute of Technology (2002).

URL http://pdos.csail.mit.edu/~baford/packrat/thesis/http://

pdos.csail.mit.edu/~baford/packrat/thesis/thesis.pdf

43

http://grammarware.net/text/2014/semiparsing.pdf
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747184
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747184
http://grammarware.net/text/2014/semiparsing.pdf
https://courses.cit.cornell.edu/ling4424/frost-launchbury.pdf
https://courses.cit.cornell.edu/ling4424/frost-launchbury.pdf
http://dx.doi.org/10.1093/comjnl/32.2.108
https://courses.cit.cornell.edu/ling4424/frost-launchbury.pdf
https://courses.cit.cornell.edu/ling4424/frost-launchbury.pdf
http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.pdf
http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.pdf
http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.pdf
http://www.cs.uu.nl/people/visser/ftp/P9707.ps.gz
http://www.cs.uu.nl/people/visser/ftp/P9707.ps.gz
http://pdos.csail.mit.edu/~baford/packrat/icfp02/packrat-icfp02.pdf
http://pdos.csail.mit.edu/~baford/packrat/icfp02/packrat-icfp02.pdf
http://dx.doi.org/10.1145/583852.581483
http://pdos.csail.mit.edu/~baford/packrat/icfp02/packrat-icfp02.pdf
http://pdos.csail.mit.edu/~baford/packrat/icfp02/packrat-icfp02.pdf
http://pdos.csail.mit.edu/~baford/packrat/thesis/ http://pdos.csail.mit.edu/~baford/packrat/thesis/thesis.pdf
http://pdos.csail.mit.edu/~baford/packrat/thesis/ http://pdos.csail.mit.edu/~baford/packrat/thesis/thesis.pdf
http://pdos.csail.mit.edu/~baford/packrat/thesis/ http://pdos.csail.mit.edu/~baford/packrat/thesis/thesis.pdf
http://pdos.csail.mit.edu/~baford/packrat/thesis/ http://pdos.csail.mit.edu/~baford/packrat/thesis/thesis.pdf

[14] N. Chomsky, Three models for the description of language, IRE Trans-

actions on Information Theory 2 (1956) 113–124, http://www.chomsky.

info/articles/195609--.pdf.

[15] E. Scott, A. Johnstone, GLL parsing, Electron. Notes Theor. Comput. Sci.

253 (7) (2010) 177–189. doi:10.1016/j.entcs.2010.08.041.

URL http://dx.doi.org/10.1016/j.entcs.2010.08.041

[16] D. Grune, C. J. Jacobs, Parsing Techniques — A Practical Guide, Springer,

2008.

URL http://www.cs.vu.nl/~dick/PT2Ed.html

[17] S. Klusener, R. Lämmel, Deriving tolerant grammars from a base-line

grammar, in: Proceedings of the International Conference on Software

Maintenance (ICSM 2003), IEEE Computer Society, 2003, pp. 179–188.

doi:10.1109/ICSM.2003.1235420.

[18] O. Nierstrasz, S. Ducasse, T. Gı̂rba, The story of Moose: an agile

reengineering environment, in: Proceedings of the European Software

Engineering Conference (ESEC/FSE’05), ACM Press, New York, NY,

USA, 2005, pp. 1–10, invited paper. doi:10.1145/1095430.1081707.

URL http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.

pdf

[19] A. Hindle, M. W. Godfrey, R. C. Holt, Reading beside the lines: Indenta-

tion as a proxy for complexity metrics, in: ICPC ’08: Proceedings of the

2008 The 16th IEEE International Conference on Program Comprehen-

sion, IEEE Computer Society, Washington, DC, USA, 2008, pp. 133–142.

doi:10.1109/ICPC.2008.13.

URL http://swag.uwaterloo.ca/~ahindle/pubs/hindle08icpc.pdf

[20] P. Landin, The next 700 programming languages, Communications of the

ACM 9 (3) (1966) 157–166. doi:10.1145/365230.365257.

URL http://www.cs.utah.edu/~eeide/compilers/old/papers/

p157-landin.pdf

44

http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf
http://dx.doi.org/10.1016/j.entcs.2010.08.041
http://dx.doi.org/10.1016/j.entcs.2010.08.041
http://dx.doi.org/10.1016/j.entcs.2010.08.041
http://www.cs.vu.nl/~dick/PT2Ed.html
http://www.cs.vu.nl/~dick/PT2Ed.html
http://dx.doi.org/10.1109/ICSM.2003.1235420
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://dx.doi.org/10.1145/1095430.1081707
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://swag.uwaterloo.ca/~ahindle/pubs/hindle08icpc.pdf
http://swag.uwaterloo.ca/~ahindle/pubs/hindle08icpc.pdf
http://dx.doi.org/10.1109/ICPC.2008.13
http://swag.uwaterloo.ca/~ahindle/pubs/hindle08icpc.pdf
http://www.cs.utah.edu/~eeide/compilers/old/papers/p157-landin.pdf
http://dx.doi.org/10.1145/365230.365257
http://www.cs.utah.edu/~eeide/compilers/old/papers/p157-landin.pdf
http://www.cs.utah.edu/~eeide/compilers/old/papers/p157-landin.pdf

[21] A. S. Givi, Layout sensitive parsing in the PetitParser framework, Bache-

lor’s thesis, University of Bern (Oct. 2013).

URL http://scg.unibe.ch/archive/projects/Sade13a.pdf

[22] A. Lavie, M. Tomita, GLR* — an efficient noise-skipping parsing algorithm

for context free grammars, in: In Proceedings of the Third International

Workshop on Parsing Technologies, 1993, pp. 123–134.

[23] M. Tomita, Efficient Parsing for Natural Language: A Fast Algorithm for

Practical Systems, Kluwer Academic Publishers, Norwell, MA, USA, 1985.

[24] W. R. Bischofberger, Sniff: A pragmatic approach to a C++ programming

environment, in: C++ Conference, 1992, pp. 67–82.

URL http://citeseer.nj.nec.com/bischofberger92sniff.html

[25] P. Asveld, A fuzzy approach to erroneous inputs in context-free language

recognition, in: Proceedings of the Fourth International Workshop on Pars-

ing Technologies IWPT’95, Institute of Formal and Applied Linguistics,

Charles University, Prague, Czech Republic, 1995, pp. 14–25.

URL http://doc.utwente.nl/64694/

[26] R. Koppler, A systematic approach to fuzzy parsing, Software: Prac-

tice and Experience 27 (6) (1997) 637–649. doi:10.1002/(SICI)

1097-024X(199706)27:6<637::AID-SPE99>3.0.CO;2-3.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

4.3198&rep=rep1&type=pdf

[27] E. Nilsson-Nyman, T. Ekman, G. Hedin, Practical scope recovery using

bridge parsing, in: D. Gašević, R. Lämmel, E. Van Wyk (Eds.), Soft-

ware Language Engineering, Vol. 5452 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2009, pp. 95–113. doi:10.1007/

978-3-642-00434-6_7.

URL http://dx.doi.org/10.1007/978-3-642-00434-6_7

45

http://scg.unibe.ch/archive/projects/Sade13a.pdf
http://scg.unibe.ch/archive/projects/Sade13a.pdf
http://citeseer.nj.nec.com/bischofberger92sniff.html
http://citeseer.nj.nec.com/bischofberger92sniff.html
http://citeseer.nj.nec.com/bischofberger92sniff.html
http://doc.utwente.nl/64694/
http://doc.utwente.nl/64694/
http://doc.utwente.nl/64694/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3198&rep=rep1&type=pdf
http://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:6<637::AID-SPE99>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:6<637::AID-SPE99>3.0.CO;2-3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3198&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3198&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-642-00434-6_7
http://dx.doi.org/10.1007/978-3-642-00434-6_7
http://dx.doi.org/10.1007/978-3-642-00434-6_7
http://dx.doi.org/10.1007/978-3-642-00434-6_7
http://dx.doi.org/10.1007/978-3-642-00434-6_7

[28] L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, E. Visser, Providing rapid

feedback in generated modular language environments. Adding error re-

covery to scannerless generalized-LR parsing, in: G. T. Leavens (Ed.),

Proceedings of the 24th ACM SIGPLAN Conference on Object-Oriented

Programing, Systems, Languages, and Applications (OOPSLA 2009), ACM

SIGPLAN Notices, ACM Press, New York, NY, USA, 2009.

[29] M. de Jonge, L. C. L. Kats, E. Soderberg, E. Visser, Natural and flexible

error recovery for generated modular language environments, ACM Trans-

actions on Programming Languages and Systems 34 (4), article No. 15, 50

pages. doi:10.1145/2400676.2400678.

Appendix A. Parsing Expression Grammars

PEGs were first introduced by Ford [3] and the formalism is closely related to

top-down parsing. PEGs are syntactically similar to CFGs [14], but they have

different semantics. The main semantic difference is that the choice operator

in PEG is ordered — it selects the first successful match — while the choice

operator in CFG is ambiguous. PEGs are composed using the operators in

Table A.5.

Definition 7 (PEG Definition). We use the standard definition as suggested

by Ford [3]. A parsing expression grammar (PEG) is a 4-tuple G = {N, T, R,

es}, where N is a set of nonterminals, T is a set of terminals, R is a set of

rules, es is a start expression. N ∩ T = ∅. Each r ∈ R is a pair (A, e), which

we write A ← e, where A ∈ N, e is a parsing expression. Parsing expressions

are defined inductively. If e, e1 and e2 are parsing expressions, then so is:

• ε, the empty string

• a, any terminal where a ∈ T

• A, any nonterminal where A ∈ N

• e1e2, a sequence

46

http://dx.doi.org/10.1145/2400676.2400678

Operator Description

′ ′ Literal string

[] Character class

· Any character

(e) Grouping

e? Optional

e∗ Zero-or-more repetitions of e

e+ One-or-more repetitions of e

&e And-predicate, does not consume input

!e Not-predicate, does not consume input

e1 e2 Sequence

e1 / e2 Prioritized choice

Table A.5: Operators for constructing parsing expressions

• e1/e2, a prioritized choice

• e∗, zero or more repetitions

• !e a not-predicate

The following operators are syntactic sugar:

• Any Character: · is character class containing all letters

• Character class: [a1, a2, ...an] character class is a1/a2/../an

• Optional expression: e? is ed/ε, where ed is desugaring of e

• One-or-more repetitions: e+ is eded∗, where ed is desugaring of e

• And-predicate: &e is !(!ed), where ed is desugaring of e

We will use text in quotation marks to refer to terminals e.g., ’a’ , ’b’ ,

’class’ . We will use identifiers A , B , C , class or method to refer to

nonterminals. We will use e or indexed e : e1 , e2 , ... to refer to parsing

expressions.

47

Definition 8 (PEG Semantics). To formalize the semantics of a grammar G =

{N, T, R, es}, we define a relation ⇒ from pairs of the form (e, x) to the output

o, where e is a parsing expression, x ∈ T ∗ is an input string to be recognized

and o ∈ T ∗∪{f} indicates the result of a recognition attempt. The distinguished

symbol f 6∈ T indicates failure.

Empty:
x ∈ T ∗

(ε, x)⇒ ε

Terminal (success case):
a ∈ T, x ∈ T ∗

(a, ax)⇒ a

Terminal (failure case):
a 6= b, (a, ε)⇒ f

(a, bx)⇒ f

Nonterminal:
A← e ∈ R (e, x)⇒ o

(A, x)⇒ o

Sequence (success case):

(e1, x1x2y)⇒ x1
(e2, x2y)⇒ x2

(e1e2, x1x2y)⇒ x1x2

Sequence (failure case 1):
(e1, x)⇒ f

(e1e2, x)⇒ f

Sequence (failure case 2):
(e1, x1y)⇒ x1 (e2, y)⇒ f

(e1e2, x1y)⇒ f

Alternation (case 1):
(e1, xy)⇒ x

(e1/e2, x)⇒ x

Alternation (case 2):
(e1, x)⇒ f (e2, x)⇒ o

(e1/e2, x)⇒ o

Repetitions (repetition case):

(e, x1x2y)⇒ x1
(e∗, x2)⇒ x2

(e∗, x1x2y)⇒ x1x2

Repetitions (termination case):
(e, x)⇒ f

(e∗, x)⇒ ε

Not predicate (case 1):
(e, xy)⇒ x

(!e, xy)⇒ f

Not predicate (case 2):
(e, xy)⇒ f

(!e, xy)⇒ ε

48

Appendix B. Examples

Appendix B.1. Example of Abstract Simulation

Let us compute the abstract simulation (see Definition 5) for the following

grammar:

S ← E1 E2

E1 ← ’a’ / ε
E2 ← ’b’ ’c’

Because of the recursive nature of the definition, we will compute ⇀ for

terminals first and we will infer the ⇀ for more complex expressions once we

have computed ⇀ for the simpler ones:

• ’a’ ⇀ 1 (rule 2), same for ’b’ and ’c’

• ’a’ ⇀ f (rule 3), same for ’b’ and ’c’

• ε ⇀ 0 (rule 10)

• E1 ⇀ 0 (rule 9)

• E2 ⇀ 1 (rule 5)

• E2 ⇀ f (rule 6)

• S ⇀ 1 (rule 5)

• S ⇀ f (rule 7)

Appendix B.2. Example of NEXT computation

Let us compute NEXT of the method island defined in the island grammar

in Listing 5. Let us suppose we have already parsed "class Foo " in the input

"class Foo endclass " . The stack now looks as shown below in Figure B.4.

4 (≈ (method/NEXT(∼method∼)) method ≈ (NEXT(∼method∼)) ,9)

3 (∼method∼ ,9)

2 (methodSea ,9)

1 (methodSea* ,9)

0 (’class’ id methodSea* ’endclass’ ,0)

Figure B.4: State of a stack after parsing "class Foo " in the input "class Foo endclass "

49

To parse ∼method∼ we need to compute NEXT (∼method∼). We do

this in the following steps.33

1. Initialize: NEXT(methodSea) = {}, n = 2

2. Check stack:

sn = s2 = methodSea and

sn−1 = s1 = e∗, where e = methodSea

3. Apply rule for e∗: NEXT (methodSea) = { methodSea } ∪NEXT(methodSea ∗)

(a) Call: NEXT (methodSea*)

(b) Initialize: NEXT (methodSea*) = {}, n = 1

(c) Check stack:

sn = s1 = methodSea* and

sn−1 = s0 = e1e2e3e4, e3 = methodSea* , e4 = ’endclass’

(d) Apply the rule for sequence, where e4 6⇀ 0:

NEXT(methodSea*) = { ’endclass’ }
(e) Return: NEXT (methodSea*) = { ’endclass’ }

4. Return: NEXT (methodSea) = { methodSea ’endclass’ }

Appendix B.3. PEG Example

Let us go through the grammar S ← ∼a∼ ∼b∼ using "..a..b.. " as

an input. As we see in Figure B.5, the stack is initalized with (S, 0) and

the whole result is "..a..b.. " , because it is a result of nonterminal ex-

pansion S ← ∼a∼ ∼b∼ . The sequence on the top is straightforward, as

∼a∼ consumes "..a.. " and ∼b∼ consumes "b.. " , and the result is then

"..a..b.. " (see Figure B.6).

In order to get result of ∼a∼ invoked in position 0, we first follow Defini-

tion 2 (see Figure B.7). It is a sequence of three parsers (generalization from the

sequence of two to the sequence of three is straightforward). In Figure B.8 we

33To simplify, we start from stack position 2, because NEXT (∼method∼) (stack position

3) is trivially NEXT (methodSea) (stack position 2).

50

Nonterminal:

1. S ← ∼a∼ ∼b∼ ∈ R

2. ..a..b..
1 (∼a∼ ∼b∼ ,0)

0 (S ,0)
⇒

o =

..a..b..

..a..b.. 0 (S ,0) ⇒
o =

..a..b..

Figure B.5: The Inference rule for Nonterminal

Sequence I (success case):

1. ..a..b..

2 (∼a∼ ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
x1 =

..a..

2. b..

2 (∼b∼ ,5)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
x2 =

b..

..a..b..
1 (∼a∼ ∼b∼ ,0)

0 (S ,0)
⇒

x1x2 =

..a..b..

Figure B.6: The Inference rule for Sequence

see that before-water consumes ".. " , the island itself consumes the desired

"a " and another ".. " is consumed by after-water.

51

Rewrite according to the Definition 2:

1. ..a..b..

2 (∼a∼ ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
o =

..a..

..a..b..

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
o =

..a..

Figure B.7: Rewrite Rule according to the Definition 2

Sea Sequence I (success case):

1. ..a..b..

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
y1 =

..

2. a..b..

3 (a ,2)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
y2 =

a

3. ..b..

3 (≈ (NEXT(∼a∼)) ,3)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
y3 =

..

..a..b..

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
y1y2y3 =

..a..

Figure B.8: The Inference rule for Sequence

Let us investigate what happens in before-water of ∼a∼ . First of all, we

need to determine the NEXT(∼a∼). In this case it is ∼b∼ (see Appendix

B.2 for more complex example). Once we know the boundary, before-water tries

52

to find the island a or its boundary ∼b∼ at positions 0 and 1 until it finds

the island at the position 2 (see Figure B.9). We return a substring of all the

positions for which we failed, i.e., ".. "

Water (boundary found):

1. ..a..b..

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

2. .a..b..

5 (a/ ∼b∼ ,1)

4 (≈ (a/NEXT(∼a∼)) ,1)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

3. a..b..

6 (a/ ∼b∼ ,2)

5 (≈ (a/NEXT(∼a∼)) ,2)

4 (≈ (a/NEXT(∼a∼)) ,1)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ a 6= f

..a..b..

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒
x′ =

..

Figure B.9: The Inference rule for Water

Overlapping Seas. The interesting question is, why does ∼b∼ fail in position

0? We already explained the problem with overlapping seas in subsection 3.3,

53

and now we show the computation formally. First of all, we rewrite the sea

on top of the stack according to Definition 2. The new sequence on top of the

stack fails because before-water returns ε and there is no b at position 0 (see

Figure B.10) .

Sea Sequence II (failure case):

1. ..a..b..

6 (≈ (b/NEXT(∼b∼)) ,0)

5 (≈ (b/NEXT(∼b∼)) b ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ ε

2. ..a..b..

6 (b ,0)

5 (≈ (b/NEXT(∼b∼)) b ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

..a..b..

5 (≈ (b/NEXT(∼b∼)) b ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

Figure B.10: The Inference rule for Sequence (failure case)

The before-water of ∼b∼ returns ε , because of the overlapping seas case.

It analyzes the stack and notices the before-water of ∼a∼ invoked on the

position 0 (using the seasOverlap function) and returns ε (see Figure B.11).

If there is no case of overlapping seas in the grammar, the before-water of

54

Water (Overlapping Seas Case):

1. seasOverlap

6 (≈ (b/NEXT(∼b∼)) ,0)

5 (≈ (b/NEXT(∼b∼)) a ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

= true

..a..b..

6 (≈ (b/NEXT(∼b∼)) ,0)

5 (≈ (b/NEXT(∼b∼)) a ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼)) a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ ε

Figure B.11: The Inference rule for Overlapping Seas

∼b∼ consumes "..a.. " contrary to the correct parse ε (see Figure B.11).

This means that the before-water of ∼a∼ (see Figure B.9) would be x′ = ε .

This would then fail the whole ∼a∼ and consequently the whole ∼a∼ ∼b∼ .

55

