60 research outputs found

    Genômica e proteômica de Anaplasma marginale: contribuições para o controle da riquétsia.

    Get PDF
    A anaplasmose bovina é causada pela riquétsia intra-eritrocítica Anaplasma marginale, responsável por importantes prejuízos econômicos, por causa da alta morbidade e mortalidade em rebanhos bovinos suscetíveis. A vacinação tem sido uma forma econômica e eficiente de controlar a enfermidade. No entanto, os métodos de imunização tradicionais apresentam efeitos adversos em algumas categorias de animais. Nas últimas décadas, os estudos sobre imunização contra Anaplasma concentraram-se nas proteínas de superfície MSP1a, 1b, 2, 3, 4 e 5. No entanto, até o momento, os resultados foram pouco promissores, apontando a necessidade de ampliar o conhecimento sobre o rol das proteínas de membrana da riquétsia e das relações estruturais entre elas. Nesse contexto, os estudos do genoma e do proteoma da riquétsia têm contribuído com essa finalidade. Pela análise genômica, 14 genes para novas proteínas de membrana externa foram identificados (omp 1-14), dentre os quais, omp2, 3 e 6 não são transcritos. Esses genes ostraram-se altamente conservados entre isolados da riquétsia. As proteínas OMP4, 7, 10 e 14 foram reconhecidas por soros de bovinos imunizados com membrana de A. marginale, mostrando potencial para desenvolvimento de imunógenos. Além disso, mediante análise proteômica, foi possível detectar novas proteínas de membrana, negligenciadas pela anotação genômica. Dentre elas estão AM097 - conjugal transfer protein, AM956 - PepA citosol amino peptidase, AM254 - fator de elongação Tu e quatro proteínas de função desconhecida: AM127, 197, 387 e 854, as quais também foram reconhecidas por soros de bovinos imunizados com membrana de A. marginale.bitstream/CNPGC-2009-09/12410/1/DOC161.pd

    Differential metabolism of Mycoplasma species as revealed by their genomes

    Get PDF
    The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall), has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms

    THE INFLUENCE OF HIV-1 SUBTYPES C, CRF31_BC AND B ON DISEASE PROGRESSION AND INITIAL VIROLOGIC RESPONSE TO HAART IN A SOUTHERN BRAZILIAN COHORT

    Get PDF
    Background: Although most HIV-1 infections in Brazil are due to subtype B, Southern Brazil has a high prevalence of subtype C and recombinant forms, such as CRF31_BC. This study assessed the impact of viral diversity on clinical progression in a cohort of newly diagnosed HIV-positive patients. Methods: From July/2004 to December/2005, 135 HIV-infected patients were recruited. The partial pol region was subtyped by phylogeny. A generalized estimating equation (GEE) model was used to examine the relationship between viral subtype, CD4+ T cell count and viral load levels before antiretroviral therapy. Hazard ratio (Cox regression) was used to evaluate factors associated with viral suppression (viral load < 50 copies/mL at six months). Results: Main HIV-1 subtypes included B (29.4%), C (28.2%), and CRF31_BC (23.5%). Subtypes B and C showed a similar trend in CD4+ T cell decline. Comparison of non-B (C and CRF31_BC) and B subtypes revealed no significant difference in the proportion of patients with viral suppression at six months (week 24). Higher CD4+ T cell count and lower viral load were independently associated with viral suppression. Conclusion: No significant differences were found between subtypes; however, lower viral load and higher CD4+ T cell count before therapy were associated with better response

    Computational methodology to determine fluid related parameters on non regular three-dimensional scaffolds

    Full text link
    The application of three-dimensional (3D) biomaterials to facilitate the adhesion, proliferation, and differentiation of cells has been widely studied for tissue engineering purposes. The fabrication methods used to improve the mechanical response of the scaffold produce complex and non regular structures. Apart from the mechanical aspect, the fluid behavior in the inner part of the scaffold should also be considered. Parameters such as permeability (k) or wall shear stress (WSS) are important aspects in the provision of nutrients, the removal of metabolic waste products or the mechanically-induced differentiation of cells attached in the trabecular network of the scaffolds. Experimental measurements of these parameters are not available in all labs. However, fluid parameters should be known prior to other types of experiments. The present work compares an experimental study with a computational fluid dynamics (CFD) methodology to determine the related fluid parameters (k and WSS) of complex non regular poly(L-lactic acid) scaffolds based only on the treatment of microphotographic images obtained with a microCT (lCT). The CFD analysis shows similar tendencies and results with low relative difference compared to those of the experimental study, for high flow rates. For low flow rates the accuracy of this prediction reduces. The correlation between the computational and experimental results validates the robustness of the proposed methodology.The authors gratefully acknowledge research support from the Spanish Ministry of Science and Innovation through research project DPI2010-20399-C04-01. The Instituto de Salud Carlos III (ISCIII) through the CIBER initiative and the Platform for Biological Tissue Characterization of the Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) are also gratefully acknowledged.Acosta Santamaría, VA.; Malvé, M.; Duizabo, A.; Mena Tobar, A.; Gallego Ferrer, G.; García Aznar, J.; Doblare Castellano, M.... (2013). Computational methodology to determine fluid related parameters on non regular three-dimensional scaffolds. Annals of Biomedical Engineering. 41(11):2367-2380. https://doi.org/10.1007/s10439-013-0849-8S236723804111Acosta Santamaría, V., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. Gómez Ribelles, M. Doblaré, G. Gallego Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non-Cryst. Solids 358(23):3141–3149, 2012.Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972, 2006.Adamczyk, Z., and T. G. M. Vandeven. Deposition of particles under external forces in laminar-flow through parallel-plate and cylindrical channels. J. Colloid Interface Sci. 80(2):340–356, 1981.Alberich, B. A., D. Moratal, J. L. Escobar, J. C. Rodríguez, A. Vallés-Lluch, L. Martí-Bonmatí, et al. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 91B(1):191–202, 2009.Al-Munajjed, A., M. Hien, R. Kujat, J. P. Gleeson, and J. Hammer. Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J. Mater. Sci. Mater. Med. 19(8):2859–2864, 2008.Alves da Silva, M. L., A. Martins, A. R. Costa-Pinto, V. M. Correlo, P. Sol, M. Bhattacharya, S. Faria, R. L. Reis, and N. M. Neves. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. 5(9):722–732, 2011.Ansys (2010) CFX Theory User Manual. Canonsburg, PA: Ansys Software.Brígido, R. D., J. M. Estellés, J. A. Sanz, J. M. García-Aznar, and M. S. Sánchez. Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling. J. Biomed. Mater. Res. B Appl. Biomater. 81B(2):448–455, 2007.Byrne, P. D., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554, 2007.Chor, M. V., and W. Li. A permeability measurement system for tissue engineering scaffolds. Meas. Sci. Technol. 18(1):208–216, 2007.Cozensroberts, C., J. A. Quinn, and D. A. Lauffenburger. Receptor-mediated adhesion phenomena—model studies with the radial-flow detachment assay. Biophys. J. 58(1):107–125, 1990.Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8(5):807–816, 2002.Deplaine, H., M. Lebourg, P. Ripalda, A. Vidaurre, P. Sanz-Ramos, G. Mora, F. Prósper, I. Ochoa, M. Doblaré, J. L. Gómez Ribelles, I. Izal-Azcárate, and G. Gallego Ferrer. Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(l-lactic acid) scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 101(1):173–186, 2013.Dias, M. R., P. R. Fernandes, J. M. Guedes, and S. J. Hollister. Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45(6):938–944, 2012.Freyman, T. M., I. V. Yannas, and L. J. Gibson. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater Sci. 46:273–282, 2001.Gong, S., H. Wang, Q. Sun, S. T. Xue, and J. Wang. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials 27(20):3793–3799, 2006.Gutierrez, R. A., and E. T. Crumpler. Potential effect of geometry on wall shear stress distribution across scaffold surfaces. Ann. Biomed. Eng. 36(1):77–85, 2008.Hammer, D. A., and D. Lauffenburger. A dynamic-model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52(3):475–487, 1987.Ho, S. T., and D. W. Hutmacher. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376, 2006.Ho, M. H., P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, and D. M. Wang. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129–138, 2004.Hutmacher, D. W., J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4):245–260, 2007.Izal, I., P. Aranda, P. Sanz-Ramos, P. Ripalda, G. Mora, F. Granero-Moltó, H. Deplaine, J. L. Gómez-Ribelles, G. G. Ferrer, V. Acosta, I. Ochoa, J. M. García-Aznar, E. J. Andreu, M. Monleón-Pradas, M. Doblaré, and F. Prósper. Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surg. Sports Traumatol. Arthrosc., 2012.Kapur, S., D. J. Baylink, and K. H. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241–251, 2003.Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32(12):1728–1743, 2004.Kelly, D. J., and P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7):1413–1422, 2005.Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A 14(4):529–537, 2008.Lacroix, D., A. Chateau, M. P. Ginebra, and J. A. Planell. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30):5326–5334, 2006.Lacroix, D., and P. J. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9):1163–1171, 2002.Li, S., J. R. De Wijn, J. Li, P. Layrolle, and K. De Groot. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9:535–548, 2003.Melchels, F. P. W., B. Tonnarelli, A. L. Olivares, I. Martin, D. Lacroix, J. Feijen, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32(11):2878–2884, 2011.O’Brien, F. J., B. A. Harley, M. A. Waller, I. Yannas, L. J. Gibson, and P. Prendergast. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15(1):3–17, 2007.Ochoa, I., J. A. Sanz, J. M. Garcia-Aznar, M. Doblare, D. M. Yunos, and A. R. Boccaccini. Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering. J. Biomech. 42:257–260, 2009.Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. Mater. Res. 38:543–549, 2005.Sandino, C., S. Checa, P. J. Prendergast, and D. Lacroix. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8):2446–2452, 2010.Sanz, J. A., J. M. García-Aznar, and M. Doblaré. On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 5(1):219–229, 2009.Sanz, J. A., C. Kasper, M. van Griensven, J. M. Garcia-Aznar, I. Ochoa, and M. Doblare. Mechanical and flow characterization of Sponceram® carriers: evaluation by homogenization theory and experimental validation. J. Biomed. Mater. Res. B Appl. Biomater. 87B(1):42–48, 2008.Singh, H., S. H. Teoh, H. T. Low, and D. W. Hutmacher. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J. Biotechnol. 119:181–196, 2005.Sjollema, J., and H. J. Busscher. Deposition of polystyrene latex-particles toward polymethylmethacrylate in a parallel plate flow cell. J. Colloid Interface Sci. 132(2):382–394, 1989.Truscello, S., G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8(4):1648–1658, 2012.Woodfield, T. B., J. Malda, J. Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161, 2004

    Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: the seeded-fruit transcriptome.

    Get PDF
    Guarana (Paullinia cupana var. sorbilis) is a plant native to the central Amazon basin. Roasted seed extracts have been used as medicinal beverages since pre-Colombian times, due to their reputation as stimulants, aphrodisiacs, tonics, as well as protectors of the gastrointestinal tract. Guarana plants are commercially cultivated exclusively in Brazil to supply the national carbonated soft-drink industry and natural product stores around the world. In this report, we describe and discuss the annotation of 15,387 ESTs from guarana seeded-fruits, highlighting sequences from the flavonoid and purine alkaloid pathways, and those related to biotic stress avoidance. This is the largest set of sequences registered for the Sapindaceae family
    corecore